BackgroundLimited options for the treatment of cartilage damage have driven the development of tissue engineered or cell therapy alternatives reliant on ex vivo cell expansion. The study of chondrogenesis in primary cells is difficult due to progressive cellular aging and senescence. Immortalisation via the reintroduction of the catalytic component of telomerase, hTERT, could allow repeated, longitudinal studies to be performed while bypassing senescent phenotypes.MethodsThree human cell types: bone marrow-derived stromal cells (BMA13), embryonic stem cell-derived (1C6) and chondrocytes (OK3) were transduced with hTERT (BMA13H, 1C6H and OK3H) and proliferation, surface marker expression and tri-lineage differentiation capacity determined. The sulphated glycosaminoglycan (sGAG) content of the monolayer and spent media was quantified in maintenance media (MM) and pro-chondrogenic media (PChM) and normalised to DNA.Results hTERT expression was confirmed in transduced cells with proliferation enhancement in 1C6H and OK3H cells but not BMA13H. All cells were negative for leukocyte markers (CD19, CD34, CD45) and CD73 positive. CD14 was expressed at low levels on OK3 and OK3H and HLA-DR on BMA13 (84.8%). CD90 was high for BMA13 (84.9%) and OK3 (97.3%) and moderate for 1C6 (56.7%), expression was reduced in BMA13H (33.7%) and 1C6H (1.6%). CD105 levels varied (BMA13 87.7%, 1C6 8.2%, OK3 43.3%) and underwent reduction in OK3H (25.1%). 1C6 and BMA13 demonstrated osteogenic and adipogenic differentiation but mineralised matrix and lipid accumulation appeared reduced post hTERT transduction. Chondrogenic differentiation resulted in increased monolayer-associated sGAG in all primary cells and 1C6H (p<0.001), and BMA13H (p<0.05). In contrast OK3H demonstrated reduced monolayer-associated sGAG in PChM (p<0.001). Media-associated sGAG accounted for ≥55% (PChM-1C6) and ≥74% (MM-1C6H).ConclusionIn conclusion, hTERT transduction could, but did not always, prevent senescence and cell phenotype, including differentiation potential, was affected in a variable manner. As such, these cells are not a direct substitute for primary cells in cartilage regeneration research.
BackgroundReplicative senescence is preceded by loss of repeat sequences of DNA from the telomeres that eventually leads to telomere dysfunction, the accumulation of irreparable DNA double strand breaks and a DNA damage response (DDR). However, we have previously reported that whilst telomere dysfunction in human keratinocytes is associated with a permanent cell cycle arrest, the DDR was very weak and transcriptional profiling also revealed several molecules normally associated with keratinocytes terminal differentiation, including S100A7 (psoriasin).ResultsWe show here that S100A7 and the closely related S100A15 (koebnerisin) are not induced by repairable or irreparable DSBs, ruling out the hypotheses that these genes are induced either by the low DDR observed or by non-specific cell cycle arrest. We next tested whether S100A7 was induced by the cell cycle effectors ARF (p14ARF), CDKN2A (p16INK4A) and TP53 (p53) and found that, although all induced a similar level of acute and permanent cell cycle arrest to telomere dysfunction, none induced S100A7 (except p53 over-expression at high levels), showing that cell cycle arrest is not sufficient for its induction. The closely related transcript S100A15 was also upregulated by telomere dysfunction, to a similar extent by p16INK4A and p53 and to a lesser extent by p14ARF.ConclusionsOur results show that mere cell cycle arrest, the upregulation of senescence-associated cell cycle effectors and DNA damage are not sufficient for the induction of the S100 transcripts; they further suggest that whilst the induction of S100A15 expression is linked to both telomere-dependent and -independent senescence, S100A7 expression is specifically associated with telomere-dependent senescence in normal keratinocytes. As both S100A7 and S100A15 are secreted proteins, they may find utility in the early detection of human keratinocyte telomere dysfunction and senescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.