Inflammation plays a central role in the development and progression of coronary heart disease (CHD). The sex hormones estrogen and testosterone have been shown to modify the inflammatory response by influencing cytokine expression in human macrophages obtained from younger individuals. The effect of these hormones on the expression of proinflammatory markers in macrophages obtained from a CHD age-relevant population has not been studied. Human monocyte-derived macrophages (HMDMs) were obtained from healthy normolipidemic men and postmenopausal women (age 50-70 years), and cultured in autologous serum along with both physiological and supraphysiological concentrations of estrogen or testosterone. HMDMs were stimulated with oxidized low-density lipoproteins, and the expression of the cytokines tumor necrosis factor a (TNF-a or TNF), interleukin (IL)6, and IL-1b (IL1B) and of the acute-phase protein C-reactive protein (CRP) was measured. Both physiological and supraphysiological concentrations of testosterone reduced the expression and secretion of TNF-a and reduced the expression of IL-1b, but did not affect the expression of IL6 or CRP. Estrogen did not modify the expression of TNF-a, IL6, and IL-1b. Estrogen caused a variable response in CRP expression that was positively associated with the plasma small dense LDL-cholesterol concentration of the donors. There were no gender differences in any of the observed effects. Our results indicate that testosterone may exert anti-inflammatory effects by reducing macrophage TNF-a expression, while the effects of estrogen on macrophage CRP expression may depend upon the extracellular lipid environment.
Golden-Syrian hamsters have been used as an animal model to assess diet-induced atherosclerosis since the early 1980s. Advantages appeared to include a low rate of endogenous cholesterol synthesis, receptor-mediated uptake of LDL cholesterol, cholesteryl ester transfer protein activity, hepatic apoB-100 and intestinal apoB-48 secretion, and uptake of the majority of LDL cholesterol via the LDL receptor pathway. Early work suggested hamsters fed high cholesterol and saturated fat diets responded similarly to humans in terms of lipoprotein metabolism and aortic lesion morphology. Recent work has not consistently replicated these findings. Reviewed was the literature related to controlled hamster feeding studies that assessed the effect of strain, background diet (non-purified, semi-purified) and dietary perturbation (cholesterol and/or fat) on plasma lipoprotein profiles and atherosclerotic lesion formation. F1B hamsters fed a non-purified cholesterol/fat-supplemented diet had more atherogenic lipoprotein profiles (nHDL-C > HDL-C) than other hamster strains or hamsters fed cholesterol/fat-supplemented semi-purified diets. However, fat type; saturated (SFA), monounsaturated or n-6 polyunsaturated (PUFA) had less of an effect on plasma lipoprotein concentrations. Cholesterol- and fish oil-supplemented semi-purified diets yielded highly variable results when compared to SFA or n-6 PUFA, which were antithetical to responses observed in humans. Dietary cholesterol and fat resulted in inconsistent effects on aortic lipid accumulation. No hamster strain was reported to consistently develop lesions regardless of background diet, dietary cholesterol or dietary fat type amount. In conclusion, at this time the Golden-Syrian hamster does not appear to be a useful model to determine the mechanism(s) of diet-induced development of atherosclerotic lesions.
The beta-catenin signaling pathway is dysregulated in most cases of colon cancer resulting in an accumulation of nuclear beta-catenin and increased transcription of genes involved in tumor progression. This study examines the effect of retinol on beta-catenin protein levels in three all-trans retinoic acid (ATRA)-resistant human colon cancer cell lines: HCT-116, WiDr, and SW620. Each cell line was treated with increasing concentrations of retinol for 24 or 48 h. Retinol reduced beta-catenin protein levels and increased ubiquitinated beta-catenin in all cell lines. Treatment with the proteasomal inhibitor MG132 blocked the retinol-induced decrease in beta-catenin indicating retinol decreases beta-catenin by increasing proteasomal degradation. Multiple pathways direct beta-catenin to the proteasome for degradation including a p53/Siah-1/adenomatous polyposis coli (APC), a Wnt/glycogen synthase kinase-3beta/APC, and a retinoid "X" receptor (RXR)-mediated pathway. Due to mutations in beta-catenin (HCT-116), APC (SW620), and p53 (WiDr), only the RXR-mediated pathway remains functional in each cell line. To determine if RXRs facilitate beta-catenin degradation, cells were treated with the RXR pan-antagonist, PA452, or transfected with RXRalpha small interfering RNA (siRNA). The RXR pan-antagonist and RXRalpha siRNA reduced the ability of retinol to decrease beta-catenin protein levels. Nuclear beta-catenin induces gene transcription via interaction with T cell factor/lymphoid enhancer factor (TCF/LEF) proteins. Retinol treatment decreased the transcription of a TOPFlash reporter construct and mRNA levels of the endogenous beta-catenin target genes, cyclin D1 and c-myc. These results indicate that retinol may reduce colon cancer cell growth by increasing the proteasomal degradation of beta-catenin via a mechanism potentially involving RXR.
The lower susceptibility of palmitoleic acid (16:1) to oxidation compared to PUFA may confer functional advantages with respect to finding acceptable alternatives to partially hydrogenated fats, but limited data are available on its effect on cardiovascular risk factors. This study investigated the effect of diets (10% fat, 0.1% cholesterol, wt:wt) enriched with macadamia [monounsaturated fatty acid (MUFA)16:1], palm (SFA,16:0), canola (MUFA,18:1), or safflower (PUFA,18:2) oils on lipoprotein profiles and aortic cholesterol accumulation in F1B Golden Syrian hamsters (n = 16/group). After 12 wk, 8 hamsters in each group were killed (phase 1). The remaining hamsters fed palm oil were changed to a diet containing coconut oil, while hamsters in the other diet groups continued on their original diets for an additional 6 wk (phase 2). With minor exceptions, the time course and dietary SFA source did not alter the study outcomes. Macadamia oil-fed hamsters had lower non-HDL cholesterol and triglyceride concentrations compared with the palm and coconut oil-fed hamsters and higher HDL-cholesterol compared with the coconut, canola, and safflower oil-fed hamsters. The aortic cholesterol concentration was not affected by dietary fat type. The hepatic cholesterol concentration was higher in the unsaturated compared with the saturated oil-fed hamsters. RBC membrane and aortic cholesteryl ester, triglyceride, and phospholipid fatty acid profiles reflected that of the dietary oil. These data suggest that an oil relatively high in palmitoleic acid does not adversely affect plasma lipoprotein profiles or aortic cholesterol accumulation and was similar to other unsaturated fatty acid-rich oils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.