Low light level and high-speed image sensors as required for space applications can suffer from a decrease in the signal to noise ratio (SNR) due to the photon-starved environment and limitations of the sensor's readout noise. The SNR can be increased by the implementation of Time Delay Integration (TDI) as it allows photoelectrons from multiple exposures to be summed in the charge domain with no added noise. Electron Multiplication (EM) can further improve the SNR and lead to an increase in device performance. However, both techniques have traditionally been confined to Charge Coupled Devices (CCD) due to the efficient charge transfer required. With the increase in demand for CMOS sensors with equivalent or superior functionality and performance, this paper presents findings from the characterisation of a low voltage EMCCD in a CMOS process using advanced design features to increase the electron multiplying gain. By using the CMOS process, it is possible to increase chip integration and functionality and achieve higher readout speeds and reduced pixel size. The presented characterisation results include analysis of the photon transfer curve, the dark current, the electron multiplying gain and analysis of the parameters' dependence on temperature and operating voltage.
Electron Multiplying Charge Coupled Devices (EMCCDs) have revolutionised low light level imaging, providing highly sensitive detection capabilities. Implementing Electron Multiplication (EM) in Charge Coupled Devices (CCDs) can increase the Signal to Noise Ratio (SNR) and lead to further developments in low light level applications such as improvements in image contrast and single photon imaging. Demand has grown for EMCCD devices with properties traditionally restricted to Complementary Metal-Oxide-Semiconductor (CMOS) image sensors, such as lower power consumption and higher radiation tolerance. However, EMCCDs are known to experience an ageing effect, such that the gain gradually decreases with time. This paper presents results detailing EM ageing in an Electron Multiplying Complementary Metal-Oxide-Semiconductor (EMCMOS) device and its effect on several device characteristics such as Charge Transfer Inefficiency (CTI) and thermal dark signal. When operated at room temperature an average decrease in gain of over 20% after an operational period of 175 hours was detected. With many image sensors deployed in harsh radiation environments, the radiation hardness of the device following proton irradiation was also tested. This paper presents the results of a proton irradiation completed at the Paul Scherrer Institut (PSI) at a 10 MeV equivalent fluence of 4.15×10 10 protons/cm 2. The pre-irradiation characterisation, irradiation methodology and post-irradiation results are detailed, demonstrating an increase in dark current and a decrease in its activation energy. Finally, this paper presents a comparison of the damage caused by EM gain ageing and proton irradiation.
Novel designs for the gain elements in electron multiplying (EM) CCDs have been implemented in a device manufactured in a low voltage CMOS process. Derived with help from TCAD simulations, the designs employ modified gate geometries in order to significantly increase the EM gain over traditional structures. Two new EM elements have been demonstrated with an order of magnitude higher gain than the typical rectangular gate designs, achieved over 100 amplifying stages and without an increase in the electric field. The principles presented in this work can be used in CMOS and CCD imagers employing electron multiplication in order to boost the gain and reduce undesirable effects such as clock-induced charge generation and gain ageing.Index Terms-Electron multiplying charge coupled devices (EMCCDs), impact ionization.
The Electron Multiplying Test Chip 1 (EMTC1) was developed with the aim of creating a device which could produce superior Electron Multiplication (EM) gain at a greatly reduced voltage. An EM gain exceeding 3% per stage has been recorded for a relatively low voltage (~13.0V) from two recently developed pixel structures. An electro-optical characterisation of the EMTC1 is presented focusing on charge transfer via experimental and simulation results aiming to provide insight into the transfer and multiplication process. The Charge Transfer Inefficiency (CTI) is analysed with the aim of providing a greater understanding of the charge transfer process. Light starved applications such as Earth observation and automated inspection are known to benefit from Time Delay Integration (TDI) and electron multiplication. Though traditionally implemented in CCDs, implementing TDI in CMOS technology can lead to an increase of functionality, higher readout speeds and reduced noise. This paper presents a discussion of the implication of these results on the potential applications of this sensor.
When a volcano erupts, it is often associated with destruction, particularly damage to infrastructure and loss of life. But these natural events also offer unexpected research opportunities, leading to serendipitous discoveries. This was the case for the volcanic events that made the headlines during 19 September to 25 December 2021, on the Canarian Island of La Palma. Rather than viewing the voluminous ash that erupted as a waste material needing to be removed as soon as possible, we saw the many possibilities that this remarkable material could offer science and engineering. Sustainability is a word that is commonly used in connection with geology these days. Here we present some possibilities of how the La Palma ash can be re‐purposed for use on this planet but also help us to develop new ideas for the future living on the Moon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.