We have studied the effect of isotopic substitution on the superconducting Tc in the 90-K superconductors Ba2YCu307 and Ba2EuCu307 by replacing ^^O with the heavier isotope '^O. Samples with approximately 75% of the '^O replaced by '^O were prepared by gas-phase ion exchange. In these samples the phonon frequencies, measured by Raman spectroscopy, are reduced by the expected ~4%. The transition temperatures, however, are found to change by less than 0.2%. This change in Tc is much less than that expected for strongly coupled phonon-mediated superconductivity.
We present a fully tunable multistage narrowband optical pole-zero notch filter that is fabricated in a silicon complementary metal oxide semiconductor (CMOS) foundry. The filter allows for the reconfigurable and independent tuning of the center frequency, null depth, and bandwidth for one or more notches simultaneously. It is constructed using a Mach-Zehnder interferometer (MZI) with cascaded tunable all-pass filter (APF) ring resonators in its arms. Measured filter nulling response exhibits ultranarrow notch 3 dB BW of 0.6350 GHz, and nulling depth of 33 dB. This filter is compact and integrated in an area of 1.75 mm 2. Using this device, a novel method to cancel undesired bands of 3 dB bandwidth of 910 MHz in microwave-photonic systems is demonstrated. The ultranarrow filter response properties have been realized based on our developed low-propagation loss silicon channel waveguide and tunable ring-resonator designs. Experimentally, they yielded a loss of 0.25 dB/cm and 0.18 dB/round trip, respectively.
Direct laser writing via two-photon polymerization (2PP) is an emerging micro-and nano-fabrication technique to prepare predetermined and architecturally precise hydrogel scaffolds with high resolution and spatial complexity. As such, these scaffolds are increasingly being evaluated for cell and tissue engineering applications. This article first discusses the basic principles and photoresists employed in hydrogel fabrication in 2PP, followed by an in-depth introduction of various mechanical and biological characterization techniques used to assess the fabricated structures. The design requirements for cell and tissue related applications are then described to guide the engineering, physicochemical, and biological efforts. Three case studies in bone, cancer, and cardiac tissues are presented that illustrate the need for structured materials in the next generation of clinical applications. This paper concludes by summarizing the progress to date, identifying additional opportunities for 2PP hydrogel scaffolds, and discussing future directions for 2PP research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.