We experimentally investigate the performance of co-optimized hybrid optical-digital imaging systems based on binary phase masks and digital deconvolution for extended depth of field (DoF) under narrow-band illumination hypothesis. These systems are numerically optimized by assuming a simple generic imaging model. Using images of DoF targets and real scenes, we experimentally demonstrate that in practice, they actually reach the DoF range for which they have been optimized. Moreover, they are shown to be robust against small mask manufacturing errors and residual spherical aberration in the optical system. These results demonstrate that the optical/digital optimization protocol based on generic imaging model can be safely used to design DoF-enhanced imaging systems aimed at real-world applications.
We investigate the depth of field (DoF) enhancing capacity of binary annular phase masks embedded in panchromatic imaging systems. We first demonstrate with numerical simulations and real-world imaging experiments that phase masks optimized for monochromatic illumination are somewhat robust to their use under wide spectrum illumination: they provide images that are slightly less sharp but less affected by deconvolution artifacts thanks to spectral averaging. Then, we show that masks specifically optimized for wide spectrum illumination perform better under this type of illumination than monochromatically optimized phase masks under monochromatic illumination, especially when the targeted DoF range is large. This interesting effect comes from the fact that deconvolution artifacts are significantly reduced by wide spectrum illumination. These results show that it is useful to take into account the illumination spectrum together with the scene characteristics and the targeted DoF range for effective co-design of DoF enhancing imaging systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.