The production of methanol from CO2 hydrogenation is a promising potential route to a renewable liquid fuel and renewable energy vector. Herein, three distinct routes to make colloidal catalysts based on mixtures of Cu(0) and ZnO nanoparticles (NPs) and using low-temperature organometallic procedures are reported. The colloids are surface coordinated by a phosphinate ligand: dioctylphosphinate ([DOPA]−), which delivers a high solubility in organic solvents. Further, the synthetic routes allow fine control of the ZnO:Cu and ligand loadings. The catalysts are prepared by mixing small NPs (2 nm) of either Cu(0) or air-stable Cu2O NPs with ZnO NPs (3 nm), or by the synthesis of Cu(0) in presence of ZnO NPs (ZnO: 2 nm, Cu: 6 nm). The resulting colloidal catalysts are applied in the liquid phase hydrogenation of CO2 to methanol (210 °C, 50 bar, 3 : 1 molar ratio of CO2 : H2). The catalysts typically exhibit 3 times higher rates when compared to a heterogeneous Cu–ZnO–Al2O3 commercial catalyst (21 vs. 7 mmolMeOH gCuZnO−1 h−1). The characterisation of the post-catalysis colloids show clear Cu/ZnO interfaces (HR-TEM), which are formed under reducing conditions, as well as differences in the Cu(0) NP size (from 3 to 7 nm) and nanoscale restructuring of the catalysts. The combination of characterisation and catalytic results indicate that the activity is mostly dictated by the Cu(0) particle size and ligand loading. Smaller Cu(0) NPs exhibited lower turnover frequency (TOF) values, whereas higher ligand loadings ([DOPA]−:(Cu + Zn) of 0.2–1.1) lead to smaller Cu(0) NPs and reduce the formation of Cu/ZnO interfaces. UV-vis spectroscopy reveals that the Cu(0) NPs are more stable to oxidation under air after catalysis than beforehand, potentially due to migration of ZnO onto the Cu surface whilst under catalytic conditions
Organometallic precursors provide a new and clean route to solutions of 2D materials relevant for applications including catalysis, electronics and sensing.
The combination of different monomer classes has been sought after to access a wider range of brush copolymers owing to their unique properties derived from their dense macromolecular structures. Herein, we report the synthesis of a 2oxazoline monomer (RAFTOx) containing a chain transfer agent at the 2-position and its subsequent utilization in reversible addition-fragmentation chain-transfer (RAFT) polymerization. With the aim of tuning the brush density in these polymers, homopolymers, block copolymers, and gradient copolymers of various ratios with 2-ethyl-2-oxazoline and RAFTOx have been prepared. Selected brush macroCTAs were then used for the RAFT polymerization of N,N-dimethylacrylamide and 2-ethyhexyl acrylate to prepare brush copolymers of different architectures.
The reaction of a series of dinucleating bis(β-diketiminate) pro-ligands with mesitylcopper in the presence and absence of mono and diphosphines has allowed the isolation of a new series of dicopper(I) complexes. Inclusion of trans -1,2-cyclohexyl (1), 2,6-pyridyl (2), and 2,2'-oxydiaryl (3)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.