Perfused livers from normal and alloxan-diabetic rats were studied to determine whether the diabetes-related decrease in glycogen synthase phosphatase was due to an alteration of the synthase molecule, an increase in synthase phosphatase activity inhibition by phosphorylase a, or generation of inhibitor of the phosphatase. With purified rat liver synthase as substrate for the phosphatase, the diabetic tissue remained 90-95% deficient in the ability to catalyze synthase D to I conversion, showing that the defect cannot be solely due to an altered substrate. When synthase phosphatase assays were carried out in the presence of rat liver glycogen phosphorylase antiserum, phosphatase activity remained 70-75% deficient in diabetic tissue. Therefore, the defect cannot be attributed to increased inhibition of synthase phosphatase by increased amounts of phosphorylase a. When synthase phosphatase assays were run by mixing extracts from normal and diabetic livers, phosphatase activity was additive, indicating that a phosphatase inhibitor was probably not involved in the phosphatase deficiency in the diabetic. These data are consistent with the hypothesis that the diabetes-related defect in glucose regulation of hepatic glycogen synthase is due to a molecular alteration or a deficiency of a specific glycogen synthase phosphatase.
A major function of insulin in target tissues is the activation of glycogen synthase. Phosphatidylinositol 3-kinase (PI3K) has been implicated in the insulin-induced activation of glycogen synthase, although the true function of this enzyme remains unclear. Data presented here demonstrate that the PI3K inhibitors wortmannin and LY-294002 block the insulin-stimulated activation of protein phosphatase 1 (PP1) in rat ventricular cardiomyocytes. This loss of phosphatase activation mimics that seen in diabetic cardiomyocytes, in which insulin stimulation fails to activate both PP1 and glycogen synthase. Interestingly, in diabetic cells, insulin stimulated PI3K activity to 300% of that in untreated controls, whereas this activity was increased by only 77% in normal cells. PI3K protein levels, however, were similar in normal and diabetic cells. Our results indicate that PI3K is involved in the stimulation of glycogen synthase activity by insulin through the regulation of PP1. The inability of insulin to stimulate phosphatase activity in diabetic cells, despite a significant increase in PI3K activity, suggests a defect in the insulin signaling pathway that contributes to the pathology of insulin-dependent diabetes.
Whereas total cardiac glycogen phosphorylase activity appears to be unaffected by severe insulin deficiency, a diabetes-induced decreased in hepatic glycogen phosphorylase activity has been demonstrated by our laboratory and others using liver extracts, isolated perfused liver, and cultured hepatocytes. The loss of activity in diabetic liver can be correlated with a drop in protein levels. Using primary cultures of cells from normal and diabetic rats and phosphorylase specific antibodies, we found a corresponding decrease in phosphorylase synthesis in diabetic hepatocytes cultured for 2 days in a serum-free, chemically defined medium. When hepatocytes are cultured in the presence of insulin, triiodothyronine, and cortisol, there is a significant recovery in the rate of phosphorylase synthesis after 3 days. Over the 3-day time period, there is no significant difference in the rate of phosphorylase degradation in normal compared with diabetic hepatocytes. Total protein synthesis in both hepatocytes and cardiomyocytes is unaffected by diabetes, as is phosphorylase synthesis in cultured cardiomyocytes.
When 3-4-week-old rats (young rats) are used as a source of hepatocytes, primary culture cells express the adult, differentiated, liver-specific isoform of glycogen synthase. Synthase enzyme protein levels are relatively stable over a 3 day culture period in young but not in adult (> 150 g rat) hepatocyte cultures. Corresponding synthase enzyme activity and mRNA levels decrease over time in culture in adult but not in young hepatocyte cultures. Young rat hepatocytes also have the ability to proliferate in chemically defined medium in the absence of added mitogens. A diabetes-induced increase in total synthase activity has been demonstrated by our lab and others, using cultured hepatocytes, liver homogenates, and perfused livers. In the present study, utilizing synthase-specific antibody and primary cultures of cells from young normal and alloxan diabetic rats, we found that greater total synthase activity in the diabetic cells was associated with higher levels of enzyme protein. Immuneprecipitation of 35S methionine-labeled freshly plated cells demonstrates an increase in the rate of protein synthesis in diabetic as compared with normal cells. Synthase mRNA levels are correspondingly increased in the diabetic relative to normal cells. Chronic exposure of young, normal hepatocytes to increasing levels of glucose induces a dose-dependent increase in total synthase activity, total synthase protein, and synthase message levels. By comparison, cells from diabetic animals do not respond by any of these measures to increased glucose concentrations. We conclude that this defined primary culture system represents a useful model for investigating the regulation of hepatic glycogen synthase and the defects which occur as a result of diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.