The aerodynamics of flapping flight for the smallest insects such as thrips is often characterized by a 'clap and fling' of the wings at the end of the upstroke and the beginning of the downstroke. These insects fly at Reynolds numbers (Re) of the order of 10 or less where viscous effects are significant. Although this wing motion is known to augment the lift generated during flight, the drag required to fling the wings apart at this scale is an order of magnitude larger than the corresponding force acting on a single wing. As the opposing forces acting normal to each wing nearly cancel during the fling, these large forces do not have a clear aerodynamic benefit. If flight efficiency is defined as the ratio of lift to drag, the clap and fling motion dramatically reduces efficiency relative to the case of wings that do not aerodynamically interact. In this paper, the effect of a bristled wing characteristic of many of these insects was investigated using computational fluid dynamics. We performed 2D numerical simulations using a porous version of the immersed boundary method. Given the computational complexity involved in modeling flow through exact descriptions of bristled wings, the wing was modeled as a homogeneous porous layer as a first approximation. High-speed video recordings of free-flying thrips in take-off flight were captured in the laboratory, and an analysis of the wing kinematics was performed. This information was used for the estimation of input parameters for the simulations. Compared with a solid wing (without bristles), the results of the study show that the porous nature of the wings contributes largely to drag reduction across the Re range explored. The aerodynamic efficiency, calculated as the ratio of lift to drag coefficients, was larger for some porosities when compared with solid wings.
The Intergovernmental Panel on Climate Change (IPCC) reported that all carbon dioxide (CO) emissions generated by water resource recovery facilities (WRRFs) during treatment are modern, based on available literature. Therefore, such emissions were omitted from IPCC's greenhouse gas (GHG) accounting procedures. However, a fraction of wastewater's carbon is fossil in origin. We hypothesized that since the fossil carbon entering municipal WRRFs is mostly from soaps and detergents as dissolved organic matter, its fate can be selectively determined during the universally applied separation treatment processes. Analyzing radiocarbon at different treatment points within municipal WRRFs, we verified that the fossil content could amount to 28% in primary influent and showed varying distribution leaving different unit operations. We recorded the highest proportion of fossil carbon leaving the secondary treatment as off-gas and as solid sludge (averaged 2.08 kg fossil-CO-emission-potential m wastewater treated). By including fossil CO, total GHG emission in municipal WRRFs increased 13%, and 23% if an on-site energy recovery system exists although much of the postdigestion fossil carbon remained in biosolids rather than in biogas, offering yet another carbon sequestration opportunity during biosolids handling. In comparison, fossil carbon contribution to GHG emission can span from negligible to substantial in different types of industrial WRRFs. With such a considerable impact, CO should be analyzed for each WRRF and not omitted from GHG accounting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.