The steam autoclaving of municipal solid waste followed by size separation was shown to be a way to recover virtually 100% of recyclable poly(ethylene terephthalate) (PET); this is a yield not attainable by a typical material recovery facility. The polymer properties of the recovered PET, which had undergone various degrees of thermal processing, were evaluated by thermogravimetric analysis, differential scanning calorimetry, gel permeation chromatography, viscometry, and solid-state NMR to assess the commercial viability of polymer reuse. The weight-average molecular weight (M w ) decreased as a result of autoclaving from 61,700 g/mol for postconsumer poly(ethylene terephthalate) (pcPET) to 59,700 g/mol for autoclaved postconsumer poly(ethylene terephthalate) [(apcPET)]. M w for the reclaimed poly(ethylene terephthalate) (rPET) was slightly lower, at 57,400 g/mol. The melting temperature increased with two heat cycles from 236 C for the heat-crystallized virgin poly(ethylene terephthalate) (vPET) pellets to 248 C for apcPET and up to 253 C for rPET. Correspondingly, the cold crystallization temperature decreased with increased processing from 134 C for vPET to 120 C for apcPET. The intrinsic viscosity varied from 0.773 dL/g for the vPET to 0.709 dL/g for rPET. Extruded samples were created to assess the potential commercial applications of the recovered rPET samples. The M w values of the extruded apcPET and rPET samples dropped to 37,000 and 34,000 g/mol, respectively, after extrusion (three heat cycles); this indicated that exposure to heat dictated that these materials would be better suited for downcycled products, such as fibers and injected-molded products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.