Reproducing sharks must provide their offspring with an adequate supply of nutrients to complete embryonic development. In oviparous (egg-laying) sharks, offspring develop outside the mother, and all the nutrients required for embryonic growth are contained in the egg yolk. Conversely, in viviparous (live-bearing) sharks, embryonic development is completed inside the mother, providing offspring with the opportunity to receive supplementary embryonic nourishment, known as matrotrophy. Viviparous sharks exhibit nearly all forms of matrotrophy known in vertebrates, including a yolk-sac placenta, which involves several significant ontogenetic modifications to fetal and maternal tissues. The selective pressures that have driven the evolution of complex placentas in some shark species, but not in others, are unresolved. Herein we review the mechanisms of reproductive allocation and placental diversity in sharks, and consider the application of both adaptive and conflict hypotheses for the evolution of placental nutrient provisioning. Both have likely played roles in placental evolution in sharks, perhaps at different times in evolutionary history. Finally, we recommend sharks as an outstanding model system to investigate the evolution of placentas and mechanisms for fetal nutrition during pregnancy in vertebrates.
The vertebrate placenta, a close association of fetal and parental tissue for physiological exchange, has evolved independently in sharks, teleost fishes, coelacanths, amphibians, squamate reptiles and mammals. This transient organ forms during pregnancy and is an important contributor to embryonic development in both viviparous and oviparous, brooding species. Placentae may be involved in transport of respiratory gases, wastes, immune molecules, hormones and nutrients. Depending on the taxon, the embryonic portion of the placenta is comprised of either extraembryonic membranes (yolk sac or chorioallantois) or temporary embryonic tissues derived via hypertrophy of pericardium, gill epithelium, gut, tails or fins. These membranes and tissues have been recruited convergently into placentae in several lineages. Here, we highlight the diversity and common features of embryonic tissues involved in vertebrate placentation and suggest future studies that will provide new knowledge about the evolution of pregnancy. This article is part of the theme issue ‘Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom’.
The fluid that surrounds the embryo in the uterus contains important nourishing factors and secretions. To maintain the distinct microenvironment in the uterine lumen, the tight junctions between uterine epithelial cells are remodeled to decrease paracellular movement of molecules and solutes. Modifications to tight junctions between uterine epithelial cells is a common feature of pregnancy in eutherian mammals, regardless of placental type. Here we used immunofluorescence microscopy and western blot analysis to describe distributional changes to tight junctional proteins, claudin‐1, ‐3, ‐4, and ‐5, in the uterine epithelial cells of a marsupial species, Sminthopsis crassicaudata. Immunofluorescence microscopy revealed claudin‐1, ‐3, and ‐5 in the tight junctions of the uterine epithelium of S. crassicaudata during pregnancy. These specific claudins are associated with restricting passive movement of fluid between epithelial cells in eutherians. Hence, their function during pregnancy in S. crassicaudata may be to maintain the uterine luminal content surrounding developing embryos. Claudin‐4 disappears from all uterine regions of S. crassicaudata at the time of implantation, in contrast with the distribution of this claudin in some eutherian mammals. We conclude that like eutherian mammals, distributional changes to claudins in the uterine epithelial cells of S. crassicaudata are necessary to support pregnancy. However, the combination of individual claudin isoforms in the tight junctions of the uterine epithelium of S. crassicaudata differs from that of eutherian mammals. Our findings suggest that the precise permeability of the paracellular pathway of the uterine epithelium is species‐specific.
Shark placentae are derived from modifications to the fetal yolk sac and the maternal uterine mucosa. In almost all placental sharks, embryonic development occurs in an egg capsule that remains intact for the entire pregnancy, separating the fetal tissues from the maternal tissues at the placental interface. Here, we investigate the structure and permeability of the egg capsules that surround developing embryos of the placental Australian sharpnose shark (Rhizoprionodon taylori) during late pregnancy. The egg capsule is an acellular fibrous structure that is 0.42 ± 0.04 μm thick at the placental interface between the yolk sac and uterine tissues, and 0.67 ± 0.08 μm thick in the paraplacental regions. This is the thinnest egg capsule of any placental shark measured so far, which may increase the diffusion rate of respiratory gases, fetal wastes, water and nutrients between maternal and fetal tissues. Molecules smaller than or equal to ~ 1000 Da can diffuse through the egg capsule, but larger proteins (~ 3000–26,000 Da) cannot. Similar permeability characteristics between the egg capsule of R. taylori and other placental sharks suggest that molecular size is an important determinant of the molecules that can be exchanged between the mother and her embryos during pregnancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.