In human and ovine fetuses, glucocorticoids stimulate leptin secretion, although the extent to which leptin mediates the maturational effects of glucocorticoids on pulmonary development is unclear. This study investigated the effects of leptin administration on indices of lung structure and function before birth. Chronically catheterized singleton sheep fetuses were infused iv for 5 days with either saline or recombinant ovine leptin (0.5 mg/kg · d leptin (LEP), 0.5 LEP or 1.0 mg/kg · d, 1.0 LEP) from 125 days of gestation (term ∼145 d). Over the infusion, leptin administration increased plasma leptin, but not cortisol, concentrations. On the fifth day of infusion, 0.5 LEP reduced alveolar wall thickness and increased the volume at closing pressure of the pressure-volume deflation curve, interalveolar septal elastin content, secondary septal crest density, and the mRNA abundance of the leptin receptor (Ob-R) and surfactant protein (SP) B. Neither treatment influenced static lung compliance, maximal lung volume at 40 cmH2O, lung compartment volumes, alveolar surface area, pulmonary glycogen, protein content of the long form signaling Ob-Rb or phosphorylated signal transducers and activators of transcription-3, or mRNA levels of SP-A, C, or D, elastin, vascular endothelial growth factor-A, the vascular endothelial growth factor receptor 2, angiotensin-converting enzyme, peroxisome proliferator-activated receptor γ, or parathyroid hormone-related peptide. Leptin administration in the ovine fetus during late gestation promotes aspects of lung maturation, including up-regulation of SP-B.
Background Canine diabetes mellitus (DM) is a common endocrine disease in domestic dogs. A number of pathological mechanisms are thought to contribute to the aetiopathogenesis of relative or absolute insulin deficiency, including immune-mediated destruction of pancreatic beta cells. DM risk varies considerably between different dog breeds, suggesting that genetic factors are involved and contribute susceptibility or protection. Associations of particular dog leucocyte antigen (DLA) class II haplotypes with DM have been identified, but investigations to date have only considered all breeds pooled together. The aim of this study was to analyse an expanded data set so as to identify breed-specific diabetes-associated DLA haplotypes. Methods The 12 most highly represented breeds in the UK Canine Diabetes Register were selected for study. DLA-typing data from 646 diabetic dogs and 912 breed-matched non-diabetic controls were analysed to enable breed-specific analysis of the DLA. Dogs were genotyped for allelic variation at DLA-DRB1, -DQA1, -DQB1 loci using DNA sequence-based typing. Genotypes from all three loci were combined to reveal three-locus DLA class II haplotypes, which were evaluated for statistical associations with DM. This was performed for each breed individually and for all breeds pooled together. Results Five dog breeds were identified as having one or more DLA haplotype associated with DM susceptibility or protection. Four DM-associated haplotypes were identified in the Cocker Spaniel breed, of which one haplotype was shared with Border Terriers. In the three breeds known to be at highest risk of DM included in the study (Samoyed, Tibetan Terrier and Cairn Terrier), no DLA haplotypes were found to be associated with DM. Conclusions Novel DLA associations with DM in specific dog breeds provide further evidence that immune response genes contribute susceptibility to this disease in some cases. It is also apparent that DLA may not be contributing obvious or strong risk for DM in some breeds, including the seven breeds analysed for which no associations were identified.
The musculoskeletal system of marsupial mammals has numerous unusual features beyond the pouch and epipubic bones. One example is the widespread absence or reduction (to a fibrous “patelloid”) of the patella (“kneecap”) sesamoid bone, but prior studies with coarse sampling indicated complex patterns of evolution of this absence or reduction. Here, we conducted an in-depth investigation into the form of the patella of extant marsupial species and used the assembled dataset to reconstruct the likely pattern of evolution of the marsupial patella. Critical assessment of the available literature was followed by examination and imaging of museum specimens, as well as CT scanning and histological examination of dissected wet specimens. Our results, from sampling about 19% of extant marsupial species-level diversity, include new images and descriptions of the fibrocartilaginous patelloid in Thylacinus cynocephalus (the thylacine or “marsupial wolf”) and other marsupials as well as the ossified patella in Notoryctes ‘marsupial moles’, Caenolestes shrew opossums, bandicoots and bilbies. We found novel evidence of an ossified patella in one specimen of Macropus rufogriseus (Bennett’s wallaby), with hints of similar variation in other species. It remains uncertain whether such ossifications are ontogenetic variation, unusual individual variation, pathological or otherwise, but future studies must continue to be conscious of variation in metatherian patellar sesamoid morphology. Our evolutionary reconstructions using our assembled data vary, too, depending on the reconstruction algorithm used. A maximum likelihood algorithm favours ancestral fibrocartilaginous “patelloid” for crown clade Marsupialia and independent origins of ossified patellae in extinct sparassodonts, peramelids, notoryctids and caenolestids. A maximum parsimony algorithm favours ancestral ossified patella for the clade [Marsupialia + sparassodonts] and subsequent reductions into fibrocartilage in didelphids, dasyuromorphs and diprotodonts; but this result changed to agree more with the maximum likelihood results if the character state reconstructions were ordered. Thus, there is substantial homoplasy in marsupial patellae regardless of the evolutionary algorithm adopted. We contend that the most plausible inference, however, is that metatherians independently ossified their patellae at least three times in their evolution. Furthermore, the variability of the patellar state we observed, even within single species (e.g. M. rufogriseus), is fascinating and warrants further investigation, especially as it hints at developmental plasticity that might have been harnessed in marsupial evolution to drive the complex patterns inferred here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.