Because chronic benzene exposure is associated with acute myeloblastic leukemia and other myeloproliferative disorders, we sought to determine whether short-term benzene exposure provides a growth advantage for granulopoietic elements over erythropoietic elements. Groups of male DBA/2J mice were exposed to 0, 10, 30, or 100 ppm benzene (6 h/day for 5 days). One day and 5 days after the benzene exposures, the numbers of the two most primitive erythroid progenitor cells (BFU-E and CFU-E) and the numbers of the most primitive granulocytic progenitor cells (GM-CFU-C) were assessed. Additional groups of mice were given hemolytic doses of phenylhydrazine (PHZ) during the 5 days of benzene exposure, while other groups of mice were given PHZ during the 5 days of recovery from benzene exposure. These experiments were designed to determine the effects of benzene exposure on progenitor cell numbers during periods of markedly heightened erythropoiesis. The results demonstrate that short-term benzene exposure does induce a growth advantage for granulocytic cells in both the bone marrow and spleen of exposed mice. Moreover, a benzene-induced shift toward granulopoiesis is observed even in those mice treated with a powerful erythropoietic stimulus. These effects disappear 5 days after cessation of benzene exposure in the bone marrow but persist in the spleen of mice treated with phenylhydrazine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.