Recently, the United States (US) oil and gas industry has dramatically increased its production, primarily due to technological advances in horizontal drilling and hydraulic fracturing. Current hydraulic fracturing practices require a significant amount of water. Section 9.2.1 of the API Recommended Practice (2015) states that of development activities including drilling and completion activites, hydraulic fracturing, typically results in the most significant water use. For context, hydraulic fracturing operations in 2000 used approximately 177,000 gallons of water per oil and gas well. According to USGS, hydraulic fracturing requirements increased to over four million gallons of water per oil well and 5.1 million gallons of water per gas well in 2014 (USGS, 2015). The Environmental Protection Agency's multiyear study found an increasing trend in water use per well attributed to growing numbers of wells drilled, with longer laterals and more stages completed (Dunn-Norman, et al., 2018). Many US oil and gas companies’ annual reports and public communications currently feature sustainability and environmentally-responsible development strategies. However, opportunities to minimize negative environmental impact without affecting the value of a large-scale unconventional development is extremely difficult, particularly in the current low oil price market. Operators throughout the industry are developing water management facilities focused on safe, reliable and environmentally friendly water management practices. This paper discusses utilizing in-situ mechanical rock property data to optimize completion strategies, which can help reduce the negative impacts of hydraulic fracturing, while maintaining, and often increasing, production.
Optimizing horizontal well placement is often not limited to identifying the most favorable reservoir, but also identifying the ideal target window within that reservoir. In unconventional reservoirs, the ideal target window must have both appropriate reservoir quality and the mechanical rock properties conducive to effective hydraulic fracturing. This paper presents two case studies from the Permian Basin. The first study directly compares wireline logs and core data with drilling vibration analysis. Analyzing drill bit vibrations, one can process mechanical rock property data. This process is called drill bit geomechanics. These high-resolution drill-bit-derived data were first calibrated to wireline and core data, then applied to target future landing zones. The second case study compares drill bit geomechanics data across three neighboring 10,000-ft horizontal wells, all of which landed in the same target zone. Based on the drill bit geomechanics data, the three wells showed notable differences in mechanical rock quality. The operator found the three wells’ production responses also differed. High frequency measurements of drilling-induced vibrations were recorded through several producing Permian reservoirs. In the pilot well, the recording tool was run behind a coring assembly to obtain mechanical data at in-situ pressure and temperature. Elastic stress-strain relationships were used to solve for the stiffness coefficients and determine relative values of mechanical properties (i.e., Young's Modulus (YM) and Poisson's Ratio (PR)). The resulting mechanical data were compared directly to core analysis, wireline dipole sonic logs, and wireline image logs. In general, the mechanical rock properties derived from drilling vibrations compared well with those from the sonic log and core analysis. One can attribute differences between the datasets to fluid effects and differences in resolution. The drill-bit-derived mechanical properties showed fine-scale changes and thinly-bedded intervals that were not identified by the sonic log. Using sonic measurements to determine in-situ mechanical properties can have non-uniqueness. Analyzing cores also includes challenges of translating exhumed core properties to those of in-situ conditions. Combining the in-situ measurement of mechanical properties from drilling vibrations with the traditional sonic log and core analysis minimized uncertainties. Increased understanding of mechanical properties in the pilot well informed the landing zone target intervals for the horizontal well development plan. Understanding mechanical properties is also critical to effective hydraulic fracture stimulation design and execution. Even within a landing zone, mechanical properties can vary laterally. Measuring and understanding these variations in mechanical properties can improve completions and lead to increased well productivity. Gathering drill bit geomechanics data provides a lower cost and lower risk method to acquire mechanical rock properties in long, horizontal wellbores. These near-wellbore variations in mechanical rock properties are ideal for use in identifying target landing zones for horizontal wells. One can use the data to create high-resolution, laterally variable fracture simulation and reservoir models. By integrating these data sets with mechanical rock properties recorded while drilling, operators can have significantly higher confidence in choosing a target landing zone and improving completions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.