Background We tested the effect of different blood flow levels in the extracorporeal circuit on the measurements of cardiac stroke volume (SV), global end-diastolic volume index (GEDVI) and extravascular lung water index derived from transpulmonary thermodilution (TPTD) in 20 patients with severe acute respiratory distress syndrome (ARDS) treated with veno-venous extracorporeal membrane oxygenation (ECMO). Methods Comparative SV measurements with transesophageal echocardiography and TPTD were performed at least 5 times during the treatment of the patients. The data were interpreted with a Bland–Altman analysis corrected for repeated measurements. The interchangeability between both measurement modalities was calculated and the effects of extracorporeal blood flow on SV measurements with TPTD was analysed with a linear mixed effect model. GEDVI and EVLWI measurements were performed immediately before the termination of the ECMO therapy at a blood flow of 6 l/min, 4 l/min and 2 l/min and after the disconnection of the circuit in 7 patients. Results 170 pairs of comparative SV measurements were analysed. Average difference between the two modalities (bias) was 0.28 ml with an upper level of agreement of 40 ml and a lower level of agreement of -39 ml within a 95% confidence interval and an overall interchangeability rate between TPTD and Echo of 64%. ECMO blood flow did not influence the mean bias between Echo and TPTD (0.03 ml per l/min of ECMO blood flow; p = 0.992; CI − 6.74 to 6.81). GEDVI measurement was not significantly influenced by the blood flow in the ECMO circuit, whereas EVLWI differed at a blood flow of 6 l/min compared to no ECMO flow (25.9 ± 10.1 vs. 11.0 ± 4.2 ml/kg, p = 0.0035). Conclusions Irrespectively of an established ECMO therapy, comparative SV measurements with Echo and TPTD are not interchangeable. Such caveats also apply to the interpretation of EVLWI, especially with a high blood flow in the extracorporeal circulation. In such situations, the clinician should rely on other methods of evaluation of the amount of lung oedema with the haemodynamic situation, vasopressor support and cumulative fluid balance in mind. Trial registration: German Clinical Trials Register (DRKS00021050). Registered 03/30/2020 https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00017237
In severe acute respiratory distress syndrome (ARDS), veno-venous extracorporeal membrane oxygenation (V-V ECMO) has been proposed as a therapeutic strategy to possibly reduce mortality. Transpulmonary thermodilution (TPTD) enables monitoring of the extravascular lung water index (EVLWI) and cardiac preload parameters such as intrathoracic blood volume index (ITBVI) in patients with ARDS, but it is not generally recommended during V-V ECMO. We hypothesized that the amount of extracorporeal blood flow (ECBF) influences the calculation of EVLWI and ITBVI due to recirculation of indicator, which affects the measurement of the mean transit time (MTt), the time between injection and passing of half the indicator, as well as downslope time (DSt), the exponential washout of the indicator. EVLWI and ITBVI were measured in 20 patients with severe ARDS managed with V-V ECMO at ECBF rates from 6 to 4 and 2 l/min with TPTD. MTt and DSt significantly decreased when ECBF was reduced, resulting in a decreased EVLWI (26.1 [22.8–33.8] ml/kg at 6 l/min ECBF vs 22.4 [15.3–31.6] ml/kg at 4 l/min ECBF, p < 0.001; and 13.2 [11.8–18.8] ml/kg at 2 l/min ECBF, p < 0.001) and increased ITBVI (840 [753–1062] ml/m2 at 6 l/min ECBF vs 886 [658–979] ml/m2 at 4 l/min ECBF, p < 0.001; and 955 [817–1140] ml/m2 at 2 l/min ECBF, p < 0.001). In patients with severe ARDS managed with V-V ECMO, increasing ECBF alters the thermodilution curve, resulting in unreliable measurements of EVLWI and ITBVI. German Clinical Trials Register (DRKS00021050). Registered 14/08/2018. https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00021050
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.