We present an update to the status of research on succinic semialdehyde dehydrogenase (SSADH) deficiency (SSADHD), a rare disorder of GABA metabolism. This is an unusual disorder featuring the accumulation of both GABA and its neuromodulatory analog, gamma-hydroxybutyric acid (GHB), and recent studies have advanced the potential clinical application of NCS-382, a putative GHB receptor antagonist. Animal studies have provided proof-of-concept that enzyme replacement therapy could represent a long-term therapeutic option. The characterization of neuronal stem cells (NSCs) derived from aldehyde dehydrogenase 5a1 (aldh5a1) mice, the murine model of SSADHD, has highlighted NSC utility as an in vitro system in which to study therapeutics and associated toxicological properties. Gene expression analyses have revealed that transcripts encoding GABA receptors are down-regulated and may remain largely immature in aldh5a1 brain, characterized by excitatory as opposed to inhibitory outputs, the latter being the expected action in the mature central nervous system. This indicates that agents altering chloride channel activity may be therapeutically relevant in SSADHD. The most recent therapeutic prospects include mTOR (mechanistic target of rapamycin) inhibitors, drugs that have received attention with the elucidation of the effects of elevated GABA on autophagy. The outlook for novel therapeutic trials in SSADHD continues to improve.
We report the in vitro assessment of pharmacotoxicity for the high-affinity GHB receptor ligand, NCS-382, using neuronal stem cells derived from mice with a targeted deletion of the aldehyde dehydrogenase 5a1 gene (succinic semialdehyde dehydrogenase(SSADH)-deficient mice). These animals represent a phenocopy of the human disorder of GABA metabolism, SSADH deficiency, that metabolically features accumulation of both GABA and the GABA-analog γ-hydroxybutyric acid in conjunction with a nonspecific neurological phenotype. We demonstrate for the first time using MDCK cells that NCS-382 is actively transported and capable of inhibiting GHB transport. Following these in vitro assays with in vivo studies in aldh5a1 mice, we found the ratio of brain/liver GHB to be unaffected by chronic NCS-382 administration (300mg/kg; 7 consecutive days). Employing a variety of cellular parameters (reactive oxygen and superoxide species, ATP production and decay, mitochondrial and lysosomal number, cellular viability and necrosis), we demonstrate that up to 1mM NCS-382 shows minimal evidence of pharmacotoxicity. As well, studies at the molecular level indicate that the effects of NCS-382 at 0.5mM are minimally toxic as evaluated using gene expression assay. The cumulative data provides increasing confidence that NCS-382 could eventually be considered in the therapeutic armament for heritable SSADH deficiency.
Murine succinic semialdehyde dehydrogenase deficiency (SSADHD) manifests with high concentrations of γ‐aminobutyric acid (GABA) and γ‐hydroxybutyrate (GHB) and low glutamine in the brain. To understand the pathogenic contribution of central glutamine deficiency, we exposed aldh5a1−/− (SSADHD) mice and their genetic controls (aldh5a1+/+) to either a 4% (w/w) glutamine‐containing diet or a glutamine‐free diet from conception until postnatal day 30. Endpoints included brain, liver and blood amino acids, brain GHB, ataxia scores, and open field testing. Glutamine supplementation did not improve aldh5a1−/− brain glutamine deficiency nor brain GABA and GHB. It decreased brain glutamate but did not change the ratio of excitatory (glutamate) to inhibitory (GABA) neurotransmitters. In contrast, glutamine supplementation significantly increased brain arginine (30% for aldh5a1+/+ and 18% for aldh5a1−/− mice), and leucine (12% and 18%). Glutamine deficiency was confirmed in the liver. The test diet increased hepatic glutamate in both genotypes, decreased glutamine in aldh5a1+/+ but not in aldh5a1−/−, but had no effect on GABA. Dried bloodspot analyses showed significantly elevated GABA in mutants (approximately 800% above controls) and decreased glutamate (approximately 25%), but no glutamine difference with controls. Glutamine supplementation did not impact blood GABA but significantly increased glutamine and glutamate in both genotypes indicating systemic exposure to dietary glutamine. Ataxia and pronounced hyperactivity were observed in aldh5a1−/− mice but remained unchanged by the diet intervention. The study suggests that glutamine supplementation improves peripheral but not central glutamine deficiency in experimental SSADHD. Future studies are needed to fully understand the pathogenic role of brain glutamine deficiency in SSADHD.
Pathogenic variants in ALDH5A1 cause succinic semialdehyde dehydrogenase (SSADH) deficiency, with >180 cases reported worldwide. However, a nonspecific neurologic presentation and inconsistent variant nomenclature have limited diagnoses. In this study, pathogenic variants in ALDH5A1 were curated and variant prevalence assessed in the Genome Aggregation Database (gnomAD) to determine a minimum carrier frequency and to estimate disease prevalence. Stringent population variant analysis, including 98 reported disease-associated ALDH5A1 variants, indicates a pan-ethnic carrier frequency of ∼1/340, supporting a prevalence of SSADH deficiency of ∼1/460 000 worldwide, with highest carrier frequencies observed in East Asian and South Asian populations. Because heterozygous loss of function alleles are rare in gnomAD and >60% of reported disease-causing variants were missense changes that were not present in gnomAD, the pan-ethnic carrier frequency for SSADH deficiency is likely not fully represented in this study. Additional analyses to investigate the potential impact of more common ALDH5A1 variants with reduced but not deficient enzyme activity, including analysis in diverse populations, are needed to fully assess the prevalence of this ultra-rare disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.