International audienceNot Availabl
Abstract. The temporal evolution of the physical and biogeochemical structure of an oxygen-depleted anticyclonic modewater eddy is investigated over a 2-month period using high-resolution glider and ship data. A weakly stratified eddy core (squared buoyancy frequency N 2 ∼ 0.1 × 10 −4 s −2 ) at shallow depth is identified with a horizontal extent of about 70 km and bounded by maxima in N 2 . The upper N 2 maximum (3-5 × 10 −4 s −2 ) coincides with the mixed layer base and the lower N 2 maximum (0.4 × 10 −4 s −2 ) is found at about 200 m depth in the eddy centre. The eddy core shows a constant slope in temperature/salinity (T /S) characteristic over the 2 months, but an erosion of the core progressively narrows down the T /S range. The eddy minimal oxygen concentrations decreased by about 5 µmol kg −1 in 2 months, confirming earlier estimates of oxygen consumption rates in these eddies.Separating the mesoscale and perturbation flow components reveals oscillating velocity finestructure (∼ 0.1 m s −1 ) underneath the eddy and at its flanks. The velocity finestructure is organized in layers that align with layers in properties (salinity, temperature) but mostly cross through surfaces of constant density. The largest magnitude in velocity finestructure is seen between the surface and 140 m just outside the maximum mesoscale flow but also in a layer underneath the eddy centre, between 250 and 450 m. For both regions a cyclonic rotation of the velocity finestructure with depth suggests the vertical propagation of near-inertial wave (NIW) energy. Modification of the planetary vorticity by anticyclonic (eddy core) and cyclonic (eddy periphery) relative vorticity is most likely impacting the NIW energy propagation. Below the low oxygen core salt-finger type double diffusive layers are found that align with the velocity finestructure.Apparent oxygen utilization (AOU) versus dissolved inorganic nitrate (NO − 3 ) ratios are about twice as high (16) in the eddy core compared to surrounding waters (8.1). A large NO − 3 deficit of 4 to 6 µmol kg −1 is determined, rendering denitrification an unlikely explanation. Here it is hypothesized that the differences in local recycling of nitrogen and oxygen, as a result of the eddy dynamics, cause the shift in the AOU : NO − 3 ratio. High NO − 3 and low oxygen waters are eroded by mixing from the eddy core and entrain into the mixed layer. The nitrogen is reintroduced into the core by gravitational settling of particulate matter out of the euphotic zone. The low oxygen water equilibrates in the mixed layer by air-sea gas exchange and does not participate in the gravitational sinking. Finally we propose a mesoscalesubmesoscale interaction concept where wind energy, mediated via NIWs, drives nutrient supply to the euphotic zone and drives extraordinary blooms in anticyclonic mode-water eddies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.