Cerias, appropriately doped with trivalent rare earth ions, have high oxide ion conductivity and are attractive SOFC (solid oxide fuel cell) electrolytes. Here, seven compositions of Ce0.8SmxGdyNdzO1.9 (where x, y and z = 0.2, 0.1, 0.0667 or 0 and x + y + z = 0.2) are synthesised using a low temperature method in order to determine the effect of multiple doping on microstructure and conductivity. Analysis using scanning and transmission electron microscopy, inductively coupled plasma mass spectrometry, X-ray diffraction and impedance spectroscopy is carried out. Crystallite sizes are determined in the powders and relative densities and grain size distributions were obtained in sintered pellets. Total, bulk and grain boundary conductivities are obtained using impedance spectroscopy and corresponding activation energies and enthalpies of ion migration and defect association are calculated. The highest total conductivity observed at 600 °C is 1.80 Sm-1 for Ce0.8Sm0.1Gd0.1O1.9 and an enhancement effect on conductivity for this combination of codopants between 300 °C and 700 °C relative to the singly doped compounds-Ce0.8Sm0.2O1.9 and Ce0.8Gd0.2O1.9-is seen. This has interesting implications for application as SOFC electrolytes, especially at intermediate temperatures.
In a systematic study, two compositional series of ceria-based oxides, both co-doped with Sm and Gd, were synthesised using a low temperature method and evaluated as oxygen ion-conducting electrolytes for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs). Series one, Ce1-2xSmxGdxO2-x, had equal concentrations of Sm and Gd but varying total dopant concentration. Series two, Ce0.825SmxGd0.175-xO1.9125, had a fixed total dopant concentration but the Sm:Gd concentration ratio was varied. The materials were characterised using scanning and transmission electron microscopy, inductively coupled plasma mass spectrometry and X-ray diffraction. Impedance spectra were recorded on dense pellets of these materials.From these, total, bulk and grain boundary conductivities and capacitances along with activation energies, pre-exponential constants and enthalpies of ion migration and defect association were obtained. These gave a detailed insight into the fundamental conduction processes in the materials. Ce0.825Sm0.0875Gd0.0875O1.9125 had the highest total ionic conductivity at temperatures of 550 °C and above and also demonstrated an enhanced conductivity with respect to its singly-doped parent compounds, Ce0.825Sm0.175O1.9125 and Ce0.825Gd0.175O1.9125, at 400 °C and above. This compares favourably with previously-reported values and has promising implications for the development of IT-SOFCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.