Multiple acyl-CoA dehydrogenase deficiencies (MADDs) are a heterogeneous group of metabolic disorders with combined respiratory-chain deficiency and a neuromuscular phenotype. Despite recent advances in understanding the genetic basis of MADD, a number of cases remain unexplained. Here, we report clinically relevant variants in FLAD1, which encodes FAD synthase (FADS), as the cause of MADD and respiratory-chain dysfunction in nine individuals recruited from metabolic centers in six countries. In most individuals, we identified biallelic frameshift variants in the molybdopterin binding (MPTb) domain, located upstream of the FADS domain. Inasmuch as FADS is essential for cellular supply of FAD cofactors, the finding of biallelic frameshift variants was unexpected. Using RNA sequencing analysis combined with protein mass spectrometry, we discovered FLAD1 isoforms, which only encode the FADS domain. The existence of these isoforms might explain why affected individuals with biallelic FLAD1 frameshift variants still harbor substantial FADS activity. Another group of individuals with a milder phenotype responsive to riboflavin were shown to have single amino acid changes in the FADS domain. When produced in E. coli, these mutant FADS proteins resulted in impaired but detectable FADS activity; for one of the variant proteins, the addition of FAD significantly improved protein stability, arguing for a chaperone-like action similar to what has been reported in other riboflavin-responsive inborn errors of metabolism. In conclusion, our studies identify FLAD1 variants as a cause of potentially treatable inborn errors of metabolism manifesting with MADD and shed light on the mechanisms by which FADS ensures cellular FAD homeostasis.
Riboflavin transporter deficiency (RTD) was recently characterized as a cause of genetic recessive childhood‐onset motor neuron disease (MND) with hearing loss, formerly described as Brown‐Vialetto‐Van‐Lear syndrome. We describe a 18‐year‐old woman with probable RTD mimicking juvenile Amyotrophic Lateral Sclerosis (ALS) who presented with an inaugural respiratory failure and moderate distal four limbs weakness. Only one heterozygous SLC52A3 mutation was detected, but presence of a sub‐clinical auditory neuropathy and dramatic improvement under high dose riboflavin argued for a RTD. As RTD probably has a larger phenotypic spectrum than expected, a high dose riboflavin trial should be discussed in young‐onset MND.
ObjectiveRiboflavin transporter deficiencies (RTDs), involving SLC52A3 and SLC52A2 genes, have recently been related to Brown-Vialetto-Van Laere (BVVL) syndrome, a hereditary paediatric condition associating motor neuropathy (MN) and deafness. BVVL/RTD has rarely been reported in adult patients, but is probably underdiagnosed due to poor knowledge and lack of awareness of this form of disease among neurologists. In this study, we aimed to investigate the phenotype and prognosis of RTD patients with late-onset MN.MethodsWe retrospectively collected clinical, biological and electrophysiological data from all French RTD patients with MN onset after 10 years of age (n=6) and extracted data from 19 other similar RTD patients from the literature.ResultsAdult RTD patients with MN had heterogeneous clinical presentations, potentially mimicking amyotrophic lateral sclerosis or distal hereditary motor neuropathy (56%), multinevritis with cranial nerve involvement (16%), Guillain-Barré syndrome (8%) and mixed motor and sensory neuronopathy syndromes (20%, only in SLC52A2 patients). Deafness was often diagnosed before MN (in 44%), but in some patients, onset began only with MN (16%). The pattern of weakness varied widely, and the classic pontobulbar palsy described in BVVL was not constant. Biochemical tests were often normal. The majority of patients improved under riboflavin supplementation (86%).InterpretationWhereas late-onset RTD may mimic different acquired or genetic causes of motor neuropathies, it is a diagnosis not to be missed since high-dose riboflavin per oral supplementation is often highly efficient.
Background: Multiple acyl-CoA dehydrogenase deficiency (MADD), previously called glutaric aciduria type II, is a rare congenital metabolic disorder of fatty acids and amino acids oxidation, with recessive autosomal transmission. The prevalence in the general population is estimated to be 9/1,000,000 and the prevalence at birth approximately 1/200,000. The clinical features of this disease are divided into three groups of symptoms linked to a defect in electron transfer flavoprotein (ETF) metabolism. In this case report, we present new pathogenic variations in one of the two ETF protein subunits, called electron transfer flavoprotein alpha (ETFA), in a childhood-stage patient with no antecedent. Case presentation: A five-year-old child was admitted to the paediatric emergency unit for seizures without fever. He was unconscious due to hypoglycaemia confirmed by laboratory analyses. At birth, he was a eutrophic full-term newborn with a normal APGAR index (score for appearance, pulse, grimace, activity, and respiration). He had one older brother and no parental consanguinity was reported. A slight speech acquisition delay was observed a few months before his admission, but he had no schooling problems. MADD was suspected based on urinary organic acids and plasma acylcarnitine analyses and later confirmed by genetic analysis, which showed previously unreported ETFA gene variations, both heterozygous (c.354C > A (p.Asn118Lys) and c.652G > A (p.Val218Met) variations). Treatment was based on avoiding fasting and a slow carbohydrate-rich evening meal associated with L-carnitine supplementation (approximately 100 mg/kg/day) for several weeks. This treatment was maintained and associated with riboflavin supplementation (approximately 150 mg/day). During follow up, the patient exhibited normal development and normal scholastic performance, with no decompensation. Conclusion: This case report describes new pathogenic variations of the ETFA gene. These compound heterozygous mutations induce the production of altered proteins, leading to a mild form of MADD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.