Lipase from Candida rugosa has been immobilized in different formulations of calcium alginate beads, prepared by ionotropic gelation, which differ from each other in CaCl2 concentration and hardening time, to...
Horse Liver Alcohol Dehydrogenase (HLADH) has been immobilized on calcium‐alginate beads and used for both oxidation and reduction reactions. To avoid swelling of the beads and their subsequent breakage, calcium ions were added to both reaction and storage solutions, allowing the beads to maintain the initial structural features. The techniques used for this purpose revealed that 2 mM Ca2+ is the optimal concentration, which does not significantly change the weight of the beads, the amount of water in them, and their external and internal structure. The optimized experimental procedure has been used to verify the properties of the enzyme in terms of reusability, storage, and thermal stability. The addition of calcium ions allows the enzyme to retain more than 80 % of its initial activity for fourteen cycles and approximately 50 % at the twentieth cycle. Moreover, when the biocatalyst has been stored in a buffer solution containing 2 mM Ca2+, the retention of enzyme activity after 30 days was 100 %, compared to that measured before incubation. The encapsulated enzyme exhibits greater thermal stability than free HLADH up to at least 60 °C, preventing dimer dissociation into the two subunits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.