Synthetic methods have been developed to generate the complete series of resonance-stabilized heterocyclic thia/selenazyl radicals 1a-4a. X-ray crystallographic studies confirm that all four radicals are isostructural, belonging to the tetragonal space group P42(1)m. The crystal structures consist of slipped pi-stack arrays of undimerized radicals packed about 4 centers running along the z direction, an arrangement which gives rise to a complex lattice-wide network of close intermolecular E2---E2' contacts. Variable temperature conductivity (sigma) measurements reveal an increase in conductivity with increasing selenium content, particularly so when selenium occupies the E2 position, with sigma(300 K) reaching a maximum (for E1 = E2 = Se) of 3.0 x 10(-4) S cm(-1). Thermal activation energies E(act) follow a similar profile, decreasing with increasing selenium content along the series 1a (0.43 eV), 3a (0.31 eV), 2a (0.27 eV), 4a (0.19 eV). Variable temperature magnetic susceptibility measurements indicate that all four radicals exhibit S = 1/2 Curie-Weiss behavior over the temperature range 20-300 K. At lower temperatures, the three selenium-based radicals display magnetic ordering. Radical 3a, with selenium positioned at the E1 site, undergoes a phase transition at 14 K to a weakly spin-canted (phi = 0.010 degrees) antiferromagnetic state. By contrast, radicals 2a and 4a, which both possess selenium in the E2 position, order ferromagnetically, with Curie temperatures of T(c) = 12.8 and 17.0 K, respectively. The coercive fields H(c) at 2 K of 2a (250 Oe) and 4a (1370 Oe) are much larger than those seen in conventional light atom organic ferromagnets. The transport properties of the entire series 1a-4a are discussed in the light of Extended Hückel Theory band structure calculations.
New synthetic methods for heterocyclic 1,3,2-dithiazolyl (DTA) radicals have been developed, and trends in the molecular spin distributions and electrochemical properties of a series of DTA radicals are reported. The crystal structures of [1,2,5]thiadiazolo[3,4-f][1,3,2]benzodithiazol-2-yl (TBDTA) and [1,3,2]pyrazinodithiazol-2-yl (PDTA) have been determined. The structure of TBDTA (at 293 and 95 K) contains two molecules in the asymmetric unit, each of which generates pi-stacked arrays, one consisting of antiparallel chains of centrosymmetrically associated dimers, the other comprising parallel chains of unassociated radicals. The structure of PDTA (at 293 and 95 K) is simpler, consisting of slipped stacks of pi-dimers. Variable-temperature magnetic susceptibility (chi(P)) measurements on TBDTA indicate essentially paramagnetic behavior for the unassociated radical pi-stacks over the range 5-400 K. By contrast PDTA is diamagnetic at all temperatures below 300 K, but between 300 and 350 K the value of chi(P) follows a sharp and well-defined hysteresis loop, with T(C) downward arrow = 297 K and T(C) upward arrow = 343 K. These features are symptomatic of a regime of bistability involving the observed low temperature pi-dimer structure and a putative high-temperature radical pi-stack. A mechanism for the interconversion of the two phases of PDTA and related structures is proposed in which hysteretic behavior arises from cooperative effects associated with the breaking and making of a lattice-wide network of intermolecular S- - -N' and/or S- - -S' interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.