We present the first images of the transition disk around the close binary system HD 34700A in polarized scattered light using the Gemini Planet Imager instrument on Gemini South. The J and H band images reveal multiple spiral-arm structures outside a large (R = 0.49 = 175 au) cavity along with a bluish spiral structure inside the cavity. The cavity wall shows a strong discontinuity and we clearly see significant non-azimuthal polarization U φ consistent with multiple scattering within a disk at an inferred inclination ∼42 • . Radiative transfer modeling along with a new Gaia distance suggest HD 37400A is a young (∼5 Myr) system consisting of two intermediate-mass (∼2 M ) stars surrounded by a transitional disk and not a solar-mass binary with a debris disk as previously classified. Conventional assumptions of the dust-to-gas ratio would rule out a gravitational instability origin to the spirals while hydrodynamical models using the known external companion or a hypothetical massive protoplanet in the cavity both have trouble reproducing the relatively large spiral arm pitch angles (∼ 30 • ) without fine tuning of gas temperature. We explore the possibility that material surrounding a massive protoplanet could explain the rim discontinuity after also considering effects of shadowing by an inner disk. Analysis of archival Hubble Space Telescope data suggests the disk is rotating counterclockwise as expected from the spiral arm structure and revealed a new low-mass companion at 6.45 separation. We include an appendix which sets out clear definitions of Q, U, Q φ , U φ , correcting some confusion and errors in the literature.
We develop an empirical model to estimate mass-loss rates via coronal mass ejections (CMEs) for solar-type pre-main-sequence (PMS) stars. Our method estimates the CME mass-loss rate from the observed energies of PMS X-ray flares, using our empirically determined relationship between solar X-ray flare energy and CME mass: log(M CME [g]) = 0.63 × log(E flare [erg]) − 2.57. Using masses determined for the largest flaring magnetic structures observed on PMS stars, we suggest that this solar-calibrated relationship may hold over 10 orders of magnitude in flare energy and 7 orders of magnitude in CME mass. The total CME mass-loss rate we calculate for typical solar-type PMS stars is in the range 10 −12 -10 −9 M ⊙ yr −1 . We then use these CME mass-loss rate estimates to infer the attendant angular momentum loss leading up to the main sequence. Assuming the CME outflow rate for a typical ∼1 M ⊙ T Tauri star is < 10 −10 M ⊙ yr −1 , the resulting spin-down torque is too small during the first ∼1 Myr to counteract the stellar spin-up due to contraction and accretion. However, if the CME mass-loss rate is 10 −10 M ⊙ yr −1 , as permitted by our calculations, the CME spin-down torque may influence the stellar spin evolution after an age of a few Myr.
In an effort to examine the relationship between flare flux and corresponding CME mass, we temporally and spatially correlate all X-ray flares and CMEs in the LASCO and GOES archives from 1996 to 2006. We cross-reference 6 733 CMEs having well-measured masses against 12 050 X-ray flares having position information as determined from their optical counterparts. For a given flare, we search in time for CMEs which occur 10-80 minutes afterward, and we further require the flare and CME to occur within ±45• in position angle on the solar disk. There are 826 CME/flare pairs which fit these criteria. Comparing the flare fluxes with CME masses of these paired events, we find CME mass increases with flare flux, following an approximately log-linear, broken relationship: in the limit of lower flare fluxes, log(CME mass) ∝ 0.68×log(flare flux), and in the limit of higher flare fluxes, log(CME mass) ∝ 0.33×log(flare flux). We show that this broken power-law, and in particular the flatter slope at higher flare fluxes, may be due to an observational bias against CMEs associated with the most energetic flares: halo CMEs. Correcting for this bias yields a single power-law relationship of the form log(CME mass) ∝ 0.70× log(flare flux). This function describes the relationship between CME mass and flare flux over at least 3 dex in flare flux, from ≈10 −7 −10 −4 W m −2 .
In order to look for signs of on-going planet formation in young disks, we carried out the first J-band polarized emission imaging of the Herbig Ae/Be stars HD 150193, HD 163296, and HD 169142 using the Gemini Planet Imager (GPI), along with new H band observations of HD 144432. We confirm the complex "double ring" structure for the nearly face-on system HD 169142 first seen in H-band, finding the outer ring to be substantially redder than the inner one in polarized intensity. Using radiative transfer modeling, we developed a physical model that explains the full spectral energy distribution (SED) and J-and H-band surface brightness profiles, suggesting that the di↵erential color of the two rings could come from reddened starlight traversing the inner wall and may not require di↵erences in grain properties. In addition, we clearly detect an elongated, o↵-center ring in HD 163296 (MWC 275), locating the scattering surface to be 18 AU above the midplane at a radial distance of 77 AU, cospatial with a ring seen at 1.3mm by ALMA linked to the CO snow line. Lastly, we report a weak tentative detection of scattered light for HD 150193 (MWC 863) and a non-detection for HD 144432; the stellar companion known for each of these targets has likely disrupted the material in the outer disk of the primary star. For HD 163296 and HD 169142, the prominent outer rings we detect could be evidence for giant planet formation in the outer disk or a manifestation of large-scale dust growth processes possibly related to snow-line chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.