Post-mortem tissues samples are a key resource for investigating patterns of gene expression. However, the processes triggered by death and the post-mortem interval (PMI) can significantly alter physiologically normal RNA levels. We investigate the impact of PMI on gene expression using data from multiple tissues of post-mortem donors obtained from the GTEx project. We find that many genes change expression over relatively short PMIs in a tissue-specific manner, but this potentially confounding effect in a biological analysis can be minimized by taking into account appropriate covariates. By comparing ante- and post-mortem blood samples, we identify the cascade of transcriptional events triggered by death of the organism. These events do not appear to simply reflect stochastic variation resulting from mRNA degradation, but active and ongoing regulation of transcription. Finally, we develop a model to predict the time since death from the analysis of the transcriptome of a few readily accessible tissues.
Understanding the aspects of the cell functionality that account for disease or drug action mechanisms is a main challenge for precision medicine. Here we propose a new method that models cell signaling using biological knowledge on signal transduction. The method recodes individual gene expression values (and/or gene mutations) into accurate measurements of changes in the activity of signaling circuits, which ultimately constitute high-throughput estimations of cell functionalities caused by gene activity within the pathway. Moreover, such estimations can be obtained either at cohort-level, in case/control comparisons, or personalized for individual patients. The accuracy of the method is demonstrated in an extensive analysis involving 5640 patients from 12 different cancer types. Circuit activity measurements not only have a high diagnostic value but also can be related to relevant disease outcomes such as survival, and can be used to assess therapeutic interventions.
Babelomics has been running for more than one decade offering a user-friendly interface for the functional analysis of gene expression and genomic data. Here we present its fifth release, which includes support for Next Generation Sequencing data including gene expression (RNA-seq), exome or genome resequencing. Babelomics has simplified its interface, being now more intuitive. Improved visualization options, such as a genome viewer as well as an interactive network viewer, have been implemented. New technical enhancements at both, client and server sides, makes the user experience faster and more dynamic. Babelomics offers user-friendly access to a full range of methods that cover: (i) primary data analysis, (ii) a variety of tests for different experimental designs and (iii) different enrichment and network analysis algorithms for the interpretation of the results of such tests in the proper functional context. In addition to the public server, local copies of Babelomics can be downloaded and installed. Babelomics is freely available at: http://www.babelomics.org.
Recent results from large-scale genomic projects suggest that allele frequencies, which are highly relevant for medical purposes, differ considerably across different populations. The need for a detailed catalog of local variability motivated the whole-exome sequencing of 267 unrelated individuals, representative of the healthy Spanish population. Like in other studies, a considerable number of rare variants were found (almost one-third of the described variants). There were also relevant differences in allelic frequencies in polymorphic variants, including ∼10,000 polymorphisms private to the Spanish population. The allelic frequencies of variants conferring susceptibility to complex diseases (including cancer, schizophrenia, Alzheimer disease, type 2 diabetes, and other pathologies) were overall similar to those of other populations. However, the trend is the opposite for variants linked to Mendelian and rare diseases (including several retinal degenerative dystrophies and cardiomyopathies) that show marked frequency differences between populations. Interestingly, a correspondence between differences in allelic frequencies and disease prevalence was found, highlighting the relevance of frequency differences in disease risk. These differences are also observed in variants that disrupt known drug binding sites, suggesting an important role for local variability in population-specific drug resistances or adverse effects. We have made the Spanish population variant server web page that contains population frequency information for the complete list of 170,888 variant positions we found publicly available (http://spv.babelomics.org/), We show that it if fundamental to determine population-specific variant frequencies to distinguish real disease associations from population-specific polymorphisms.
Metabolic reprogramming plays an important role in cancer development and progression and is a well-established hallmark of cancer. Despite its inherent complexity, cellular metabolism can be decomposed into functional modules that represent fundamental metabolic processes. Here, we performed a pan-cancer study involving 9,428 samples from 25 cancer types to reveal metabolic modules whose individual or coordinated activity predict cancer type and outcome, in turn highlighting novel therapeutic opportunities. Integration of gene expression levels into metabolic modules suggests that the activity of specific modules differs between cancers and the corresponding tissues of origin. Some modules may cooperate, as indicated by the positive correlation of their activity across a range of tumors. The activity of many metabolic modules was significantly associated with prognosis at a stronger magnitude than any of their constituent genes. Thus, modules may be classified as tumor suppressors and oncomodules according to their potential impact on cancer progression. Using this modeling framework, we also propose novel potential therapeutic targets that constitute alternative ways of treating cancer by inhibiting their reprogrammed metabolism. Collectively, this study provides an extensive resource of predicted cancer metabolic profiles and dependencies. Combining gene expression with metabolic modules identifies molecular mechanisms of cancer undetected on an individual gene level and allows discovery of new potential therapeutic targets. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.