To better understand the evolution of the Mycobacterium tuberculosis complex, subspecies were tested for large sequence polymorphisms. Samples with greater numbers of deletions, without exception, were missing all the same regions that were deleted from samples with lesser numbers of deletions. Principal genetic groups based on single-nucleotide polymorphisms were restricted to one of the deletion-based groups, and isolates that shared genotypes based on molecular epidemiological markers were assigned almost exclusively to the same deletion type. The data provide compelling evidence that human tuberculosis did not originate from the present-day bovine form. Genomic deletions present themselves as an attractive modality to study the evolution of the M. tuberculosis complex.
Tuberculosis (TB) caused by Mycobacterium bovis and closely related members of the Mycobacterium tuberculosis complex continues to affect humans and animals worldwide and its control requires vaccination of wildlife reservoir species such as Eurasian wild boar (Sus scrofa). Vaccination efforts for TB control in wildlife have been based primarily on oral live BCG formulations. However, this is the first report of the use of oral inactivated vaccines for controlling TB in wildlife. In this study, four groups of 5 wild boar each were vaccinated with inactivated M. bovis by the oral and intramuscular routes, vaccinated with oral BCG or left unvaccinated as controls. All groups were later challenged with a field strain of M. bovis. The results of the IFN-gamma response, serum antibody levels, M. bovis culture, TB lesion scores, and the expression of C3 and MUT genes were compared between these four groups. The results suggested that vaccination with heat-inactivated M. bovis or BCG protect wild boar from TB. These results also encouraged testing combinations of BCG and inactivated M. bovis to vaccinate wild boar against TB. Vaccine formulations using heat-inactivated M. bovis for TB control in wildlife would have the advantage of being environmentally safe and more stable under field conditions when compared to live BCG vaccines. The antibody response and MUT expression levels can help differentiating between vaccinated and infected wild boar and as correlates of protective response in vaccinated animals. These results suggest that vaccine studies in free-living wild boar are now possible to reveal the full potential of protecting against TB using oral M. bovis inactivated and BCG vaccines.
Mycobacterium bovis infection in wildlife and feral species is a potential source of infection for livestock and a threat to protected and endangered species. The aim of this study was to identify Spanish wild animal species infected with M. bovis through bacteriological culture and spacer oligonucleotide typing (spoligotyping) of isolates for epidemiological purposes. This study included samples from red deer (Cervus elaphus), fallow deer (Dama dama), wild boar (Sus scrofa), Iberian lynx (Lynx pardina), hare (Lepus europaeus), and cattle (Bos taurus). They were collected in several geographical areas that were selected for their unique ecological value and/or known relationships between wildlife and livestock. In the areas included in this survey, M. bovis strains with the same spoligotyping pattern were found infecting several wild species and livestock, which indicates an epidemiological link. A locally predominant spoligotype was found in these areas. Better understanding of the transmission and distribution of disease in these populations will permit more precise targeting of control measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.