Irinotecan is widely used in the treatment of metastatic colorectal cancer (mCRC) despite its severe toxicities. Toxicity is often associated with the UGT1A1*28/*28 genotype. An explanation for idiopathic toxicity beyond the UGT1A1 biomarker, however, remains a major concern for clinicians. One of the main irinotecan transporters is P-glycoprotein (Pgp), which is a hepatic efflux pump encoded by ABCB1. P-gp is involved in the biliary excretion of irinotecan and its active metabolite SN-38. We aimed to assess whether functional variants in ABCB1 also contribute to identifying patients at risk of toxicity. A cohort of 308 mCRC patients treated with irinotecan-based regimens were genotyped for polymorphisms in ABCB1 (rs1128503, rs2032582, and rs1045642). The effect of these variants and their haplotypes on irinotecan-induced severe toxicity (diarrhea, neutropenia, asthenia, nausea, and mucositis) was assessed. After adjusting for the relevant clinical and pathological parameters in the multivariate analysis, we found rs1128503 was significantly associated with severe diarrhea and mucositis (P=0.014 and P=0.002, respectively). Additionally, rs2032582 was associated with severe mucositis (P<0.001). Our results show that rs1128503 genotyping could help to predict severe gastrointestinal toxicity induced by irinotecan.
BACKGROUND: Autistic spectrum disorders (ASD) are severe neurodevelopmental alterations characterised by deficits in social communication and repetitive and restricted behaviours. About a third of patients receive pharmacological treatment for comorbid symptoms. However, 30–50% do not respond adequately and/or present severe and long-lasting side effects. METHODS: Genetic variants in CYP1A2, CYP2C19, CYP2D6 and SLC6A4 were investigated in N = 42 ASD sufferers resistant to pharmacological treatment. Clinical recommendations based on their pharmacogenetic profiles were provided within 24–48 h of receiving a biological sample. RESULTS: A total of 39 participants (93%) improved after the pharmacogenetic intervention according to their CGI scores (difference in basal-final scores: 2.26, SD 1.55) and 37 participants (88%) according to their CGAS scores (average improvement of 20.29, SD 11.85). Twenty-three of them (55%) achieved symptom stability (CGI ≤ 3 and CGAS improvement ≥ 20 points), requiring less frequent visits to their clinicians and hospital stays. Furthermore, the clinical improvement was higher than that observed in a control group (N = 62) with no pharmacogenetic interventions, in which 66% responded to treatment (difference in CGI scores: −0.87, SD 9.4, p = 1 × 10−5; difference in CGAS scores: 6.59, SD 7.76, p = 5 × 10−8). CONCLUSIONS: The implementation of pharmacogenetic interventions has the potential to significantly improve the clinical outcomes in severe comorbid ASD populations with drug treatment resistance and poor prognosis.
Midostaurin added to intensive chemotherapy is the standard of care for acute myeloid leukemia (AML) with FLT3 mutations (FLT3mut). We analyzed the impact of midostaurin in 227 FLT3mut-AML patients included in the AML-12 prospective trial for fit patients ≤70 years (#NCT04687098). Patients were divided into an early (2012–2015) and late (2016–2020) cohorts. They were uniformly treated except for the addition of midostaurin in 71% of late group patients. No differences were observed in response rates or the number of allotransplants between groups. Outcome was improved in the late period: 2-year relapse incidence decreased from 42% vs 29% in early vs late group (p = 0.024) and 2-year overall survival (OS) improved from 47% vs 61% (p = 0.042), respectively. The effect of midostaurin was evident in NPM1mut patients (n = 151), with 2-yr OS of 72% (exposed) vs 50% (naive) patients (p = 0.011) and mitigated FLT3-ITD allelic ratio prognostic value: 2-yr OS with midostaurin was 85% and 58% in low and high ratio patients (p = 0.049) vs 67% and 39% in naive patients (p = 0.005). In the wild-type NPM1 subset (n = 75), we did not observe significant differences between both study periods. In conclusion, this study highlights the improved outcome of FLT3mut AML fit patients with the incorporation of midostaurin.
Neoadjuvant chemotherapy based on anthracyclines and ifosfamide for high-risk soft tissue sarcomas (STS) of the extremities and trunk is a controversial treatment option. There are substantial interindividual differences in clinical outcomes in patients treated with neoadjuvant chemotherapy. The aim of this study was to evaluate, as biomarkers, polymorphisms in genes encoding drug-metabolizing enzymes, drug transporters, or drug targets and their association with toxicity and survival in STS patients treated with neoadjuvant chemotherapy. We analysed variants in genes involved in anthracycline metabolism (ABCB1, ABCC2, NQO1, CBR3, and SLC22A16) and in ifosfamide catabolism (ALDH1A1) in 79 treated patients. Two genes showed significant association after adjusted multivariate analysis: ABCC2 and ALDH1A1. In patients treated with anthracyclines, ABCC2 rs3740066 was associated with risk of febrile neutropenia (p = 0.031), and with decreased overall survival (OS) (p = 0.024). ABCC2 rs2273697 was associated with recurrence-free survival (RFS) (p = 0.024). In patients treated with ifosfamide, ALDH1A1 rs3764435 was associated with RFS (p = 0.046). Our pharmacogenetic study shows for the first time that variants in genes regulating the metabolism of neoadjuvant chemotherapy may be helpful to predict toxicity and survival benefit in high-risk STS treated with neoadjuvant chemotherapy. Further validation studies are needed to establish their clinical utility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.