Proteases are one of the largest and best-characterized families of enzymes in the human proteome. Unfortunately, the understanding of protease function in the context of complex proteolytic cascades remains in its infancy. One major reason for this gap in understanding is the lack of technologies that allow direct assessment of protease activity. We report here an optimized solid-phase synthesis protocol that allows rapid generation of activity-based probes (ABPs) targeting a range of cysteine protease families. These reagents selectively form covalent bonds with the active-site thiol of a cysteine protease, allowing direct biochemical profiling of protease activities in complex proteomes. We present a number of probes containing either a single amino acid or an extended peptide sequence that target caspases, legumains, gingipains and cathepsins. Biochemical studies using these reagents highlight their overall utility and provide insight into the biochemical functions of members of these protease families.
Imaging agents that enable direct visualization and quantification of apoptosis in vivo have great potential value for monitoring chemotherapeutic response as well as for early diagnosis and disease monitoring. We describe here the development of fluorescently labeled activity based probes (ABPs) that covalently label active caspases in vivo. We used these probes to monitor apoptosis in the thymus of mice treated with dexamethasone (dex) as well as in tumor-bearing mice treated with the apoptosis inducing monoclonal antibody Apomab. Caspase ABPs provided direct readouts of the kinetics of apoptosis in live animals, whole organs and tissue extracts. The probes produced a maximum fluorescent signal that could be monitored non-invasively and that coincided with the peak in caspase activity as measured by gel analysis. Overall, these studies demonstrate that caspase-specific ABPs have the potential to be used for non-invasive imaging of apoptosis in both pre-clinical and clinical settings.
Caspases are cysteine proteases that are key effectors in apoptotic cell death. Currently, there is a lack of tools that can be used to monitor the regulation of specific caspases in the context of distinct apoptotic programs. We describe the development of highly selective inhibitors and active site probes and their applications to directly monitor executioner (caspase-3 and -7) and initiator (caspase-8 and -9) caspase activity. Specifically, these reagents were used to dissect the kinetics of caspase activation upon stimulation of apoptosis in cell-free extracts and intact cells. These studies identified a full-length caspase-7 intermediate that becomes catalytically activated early in the pathway and whose further processing is mediated by mature executioner caspases rather than initiator caspases. This form also shows distinct inhibitor sensitivity compared to processed caspase-7. Our data suggest that caspase-7 activation proceeds through a previously uncharacterized intermediate that is formed without cleavage of the intact zymogen.
The goal of this project is to describe and understand the organismal composition, structure, and physiology of microbial ecosystems from hypersaline environments. One collection of such ecosystems occurs at North America's largest saltworks, the Exportadora de Sal, in Guerrero Negro, Baja California Sur. There, seawater flows through a series of evaporative basins with an increase in salinity until saturation is reached and halite crystallization begins. Several of these ponds are lined with thick (10 cm) microbial mats that have received some biological study. To determine the nature and extent of diversity of the microbial organisms that constitute these ecosystems, we are conducting a phylogenetic analysis using molecular approaches, based on cloning and sequencing of small subunit (SSU) rRNA genes (16S for Bacteria and Archaea, 18S for Eukarya). In addition, we report preliminary results on the microbial composition of a laminated community that occurs in a crystallized gypsum-halite matrix in near-saturated salt water. Exposure of the interior of these large (kilogram) wet, endoevaporite crystals reveals a multitude of colors: layers of yellow, green, pink, and purple microbiota. To date, analyses of these two environments indicate the ubiquitous dominance of uncultured organisms of phylogenetic kinds not generally thought to be associated with hypersaline environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.