Cdc42p is a Rho GTPase that initiates signaling cascades at spatially defined intracellular sites for many cellular functions. We have previously shown that Cdc42p is localized to the yeast vacuole where it initiates actin polymerization during membrane fusion. Here we examine the activation cycle of Cdc42p during vacuole membrane fusion. Expression of either GTP-or GDP-locked Cdc42p mutants caused several morphological defects including enlarged cells and fragmented vacuoles. Stimulation of multiple rounds of fusion enhanced vacuole fragmentation, suggesting that cycles of Cdc42p activation, involving rounds of GTP binding and hydrolysis, are required to propagate Cdc42p signaling. We developed an assay to directly examine Cdc42p activation based on affinity to a probe derived from the p21-activated kinase effector, Ste20p. Cdc42p was rapidly activated during vacuole membrane fusion, which kinetically coincided with priming subreaction. During priming, Sec18p ATPase activity dissociates SNARE complexes and releases Sec17p, however, priming inhibitors such as Sec17p and Sec18p ligands did not block Cdc42p activation. Therefore, Cdc42p activation seems to be a parallel subreaction of priming, distinct from Sec18p activity. Specific mutants in the ergosterol synthesis pathway block both Sec17p release and Cdc42p activation. Taken together, our results define a novel sterol-dependent subreaction of vacuole priming that activates cycles of Cdc42p activity to facilitate membrane fusion.
Mast cells are tissue-resident immune cells that produce potent proinflammatory mediators, which are stored in cytoplasmic granules. Stimulation triggers degranulation, a process that mobilizes granules to dock and fuse to the plasma membrane, releasing mediators. Mast cell degranulation has an important role in immunity but can also intensify inflammation and contribute to allergic disorders. Hence, it is important to understand signaling pathways that regulate mast cell degranulation. Here, we examined the role of Rho proteins in regulating mast cell activation leading to degranulation. RBL-2H3 cells and bone marrow-derived mast cells (BMMCs) were stimulated through aggregation of FcεRI receptors. Stimulated cells showed a large increase in the levels of activated Rac and, to a lesser extent, RhoA. Drugs were used to acutely inhibit the function of specific Rho proteins. The Rac inhibitor EHT-1864 and the RhoA inhibitor rhosin inhibited degranulation. Microscopic characterization showed that, upon stimulation, RBL-2H3 cells formed surface ridges that grew into large protrusions reminiscent of circular dorsal ruffles, which flattened into large lamellipodia. LysoTracker-labeled cells showed granules stream into peripheral protrusions. EHT-1864 reduced granule motility, whereas rhosin increased motility; both drugs affected the formation of peripheral protrusions. These results showed that, in response to stimuli, Rho proteins control discrete cytoskeletal remodeling processes that are needed for granule exocytosis. Rac is required to stimulate the remodeling of mast cells, triggering actin-mediated flattening of the cell periphery to create an active degranulation zone, whereas RhoA controls the streaming of highly motile granules into the active zone.
The release of preformed mediators from immune cells is through a process described as exocytosis. In mast cells, exocytosis is regulated by several coordinated intracellular signaling pathways. Here, we investigated the role of the hematopoietic-specific Rho GTPase, Rac2, and the ubiquitously expressed Rac1, in controlling mast cell exocytosis. These two isoforms showed equivalent levels of expression in mouse BMMCs. Although Rac1 and Rac2 share 92% sequence identity, they were not functionally redundant, as Rac2 BMMCs were defective in exocytosis, even though Rac1 levels were unaffected. Antigen-stimulated WT mast cells underwent a series of morphological transitions: initial flattening, followed by actin-mediated peripheral membrane ruffling and calcium influx, which preceded exocytosis. Whereas membrane ruffling was unaffected in Rac2 BMMCs, calcium influx was decreased significantly. Calcium influx was studied further by examining SOCE. In Rac2 BMMCs, the activation of PLCγ1 and calcium release from intracellular stores occurred normally; however, activation of plasma membrane calcium channels was defective, shown by the lack of extracellular calcium influx and a reduction of YFP-STIM1 puncta at the plasma membrane. Additionally, we used the small molecule Rac inhibitor, EHT 1864, to target Rac signaling acutely in WT BMMCs. EHT 1864 blocked exocytosis and membrane ruffling completely in conjunction with exocytosis. Our findings suggest that antigen-stimulated membrane ruffling in mast cells is a Rac1-mediated process, as this persisted in the absence of Rac2. Therefore, we define distinct modes of Rac-regulated mast cell exocytosis: Rac2-mediated calcium influx and Rac1-mediated membrane ruffling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.