Neutrophils are capable of producing significant amounts of reactive oxygen species (ROS) by the phagocyte NADPH oxidase, which consists of membrane-bound and cytoplasmic subunits that assemble during activation. Neutrophils harbor two distinct pools of the membrane-localized oxidase components, one expressed in the plasma membrane and one in the membranes of intracellular granules. Assembly of active oxidase at either type of membrane leads to release of extracellular ROS or to the production of ROS inside intracellular compartments, respectively. The cytoplasmic NADPH oxidase subunit p40 phox seems selectively critical for the ability to generate intracellular ROS, and the recent characterization of patients with p40 phox deficiency implies that selective loss of intracellular neutrophil ROS leads to disease with pronounced hyperinflammatory features, suggesting that these ROS are critical for regulation of inflammation. This study aimed at characterizing two pharmacological NADPH oxidase inhibitors, the newly described GSK2795039 and the widely used diphenyleneiodonium (DPI), focusing on their abilities to inhibit human neutrophil ROS production extra-and intracellularly. Whereas GSK2795039 blocked extra-and intracellular NADPH oxidase activity equally, DPI was found to selectively interfere with intracellular ROS production. Selectivity for the intracellular NADPH oxidase was evident as a lower IC 50 value, faster onset, and irreversibility of inhibition. We found no evidence of direct interactions between DPI and p40 phox , but the selectivity of DPI confirms that regulation of NADPH oxidase activity in neutrophils differs depending on the subcellular localization of the enzyme. This information may be used to pharmacologically mimic p40 phox deficiency and to further our understanding of how intracellular ROS contribute to health and disease. ImmunoHorizons, 2019, 3: 488-497.
Glioblastoma (GBM) is the most aggressive form of primary brain tumor, for which effective therapies are urgently needed. Cancer cells are capable of evading clearance by phagocytes such as microglia- and monocyte-derived cells through engaging tolerogenic programs. Here, we found that high expression of sialic acid–binding immunoglobulin-like lectin 9 (Siglec-9) correlates with reduced survival in patients with GBM. Using microglia- and monocyte-derived cell-specific knockouts of Siglec-E, the murine functional homolog of Siglec-9, together with single-cell RNA sequencing, we demonstrated that Siglec-E inhibits phagocytosis by these cells, thereby promoting immune evasion. Loss of Siglec-E on monocyte-derived cells further enhanced antigen cross-presentation and production of pro-inflammatory cytokines, which resulted in more efficient T cell priming. This bridging of innate and adaptive responses delayed tumor growth and resulted in prolonged survival in murine models of GBM. Furthermore, we showed the combinatorial activity of Siglec-E blockade and other immunotherapies demonstrating the potential for targeting Siglec-9 as a treatment for patients with GBM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.