IntroductionThe SET protein is a potent physiologic inhibitor of protein phosphatase 2A (PP2A) 1 that was isolated from a chromosomal rearrangement at 9q34 in a patient with acute undifferentiated leukemia. 2 The SET protein is overexpressed in chronic myelogenous leukemia (CML) cells, and SET protein levels are further elevated during blast crisis. 3 SET overexpression in CML cells correlates with decreased PP2A activity. 3 This indicates that many of the SET oncogenic activities may be manifest through inhibition of PP2A. PP2A plays a role in many cellular processes, including cell cycle regulation, cell proliferation, apoptosis, development, cytoskeleton dynamics, cell motility, and stem cell self-renewal. 4 In addition, PP2A is a critical tumor suppressor gene that regulates multiple important oncogenic signal transduction pathways. [5][6][7] PP2A inhibition is essential for cell transformation and tumor formation, 8,9 but overexpression of PP2A inhibitory proteins in chronic lymphocytic leukemia (CLL) has not been reported.Of the nearly 84 000 annual cases of leukemia in the Western world, B-cell CLL is the most common, accounting for ϳ 30% of adult leukemia cases. 10 Characterized by accumulation of monoclonal mature B cells, 11 the CLL clinical course is heterogeneous, with some patients experiencing an aggressive course that demands early treatment and others experiencing long survival without disease-related symptoms or ever requiring treatment. 11 Aberrant apoptosis in CLL cells correlates with arrest either in the G 0 or early G 1 phases of the cell cycle. 12,13 This defective apoptosis in CLL cells is partly the result of aberrant signaling through the Akt kinase and the ERK MAPK pathways, in which phosphorylated-Akt is necessary for survival of the leukemia cells. 14,15 The observation of aberrantly activated Akt and downstream pathways in CLL cells also suggests that the normal regulator of these pathways, PP2A, is unable to perform its normal role.We thus sought to determine whether SET is overexpressed in CLL cells relative to normal B cells. We found that SET is significantly overexpressed in CLL cells and related non-Hodgkin lymphoma (NHL) cell line cells. In freshly isolated CLL patient samples, higher cellular levels of the SET correlated with more aggressive disease requiring earlier treatment. Antagonism of SET using shRNA-mediated knockdown or pharmacologic antagonism with novel cell-permeable SET antagonist peptides induced apoptosis, reduced cellular levels of Mcl-1, and caused death of CLL and NHL cells, but normal B cells were scarcely affected by SET antagonism. We also found that pharmacologic SET antagonism in vivo inhibited growth of B-cell NHL tumor xenografts in SCID mice. Methods GeneralAll reagents were from Sigma-Aldrich unless noted otherwise. Anti-SET antibody was from Santa Cruz Biotechnology. Anti--actin, total c-Myc, pS62 c-Myc, and Mcl-1 were from Abcam. All primary antibodies were used at a 1:1000 dilution, except for -actin, which was used at 1:10 000. All secondary ...
IntroductionImpaired T cell function in sepsis is associated with poor outcome, but the mechanisms are unclear. In cancer, arginase-expressing myeloid derived suppressor cells (MDSCs) deplete arginine, impair T cell receptor CD3 zeta-chain expression and T cell function and are linked to poor clinical outcome, but their role during acute human infectious disease and in particular sepsis remains unknown. Hypoarginemia is prevalent in sepsis. This study aimed to determine whether neutrophils that co-purify with PBMC express arginase, and if arginine depletion constrains T cell CD3 zeta-chain expression and function in human sepsis.MethodsUsing flow cytometry, cell culture, HPLC, arginase activity and mRNA detection, our study examined whether neutrophils, with reduced buoyant density isolated in the Ficoll interface, metabolise L-arginine and suppress T cell proliferation in sepsis. A total of 35 sepsis patients (23 with septic shock) and 12 hospital controls in a tertiary referral hospital in tropical Australia were evaluated.ResultsOnly sepsis patients had interphase neutrophils, neutrophils co-purifying with mononuclear cells (≤1.077 specific gravity). The percentage of interphase neutrophils in sepsis was proportional to sepsis severity and correlated with plasma IL-6 concentrations. Ex vivo, sepsis-derived interphase neutrophils expressed arginase, metabolised culture L-arginine and suppressed T cell proliferation and CD3 zeta-chain expression. In vivo, in septic shock there was a longitudinal inverse association between interphase neutrophil number and CD3 zeta-chain expression. Depletion or inhibition of interphase neutrophils in vitro restored zeta-chain expression and T cell function.ConclusionsFor the first time during an acute human infection, interphase neutrophils that express arginase were found to circulate in sepsis, in proportion to disease severity. These neutrophil-MDSCs impair T cell CD3 zeta-chain expression and T cell function via L-arginine metabolism, and likely contribute to the T cell dysfunction seen in sepsis. Modulation of neutrophil-MDSC or their downstream effects warrant consideration as targets for novel adjunctive therapies in sepsis.Electronic supplementary materialThe online version of this article (doi:10.1186/cc14003) contains supplementary material, which is available to authorized users.
Objective:To determine the functional effect of SCN8A missense mutations in 2 children with intellectual disability and developmental delay but no seizures.Methods:Genomic DNA was analyzed by next-generation sequencing. SCN8A variants were introduced into the Nav1.6 complementary DNA by site-directed mutagenesis. Channel activity was measured electrophysiologically in transfected ND7/23 cells. The stability of the mutant channels was assessed by Western blot.Results:Both children were heterozygous for novel missense variants that altered conserved residues in transmembrane segments of Nav1.6, p.Gly964Arg in D2S6 and p.Glu1218Lys in D3S1. Both altered amino acids are evolutionarily conserved in vertebrate and invertebrate channels and are predicted to be deleterious. Neither was observed in the general population. Both variants completely prevented the generation of sodium currents in transfected cells. The abundance of Nav1.6 protein was reduced by the Glu1218Lys substitution.Conclusions:Haploinsufficiency of SCN8A is associated with cognitive impairment. These observations extend the phenotypic spectrum of SCN8A mutations beyond their established role in epileptic encephalopathy (OMIM#614558) and other seizure disorders. SCN8A should be considered as a candidate gene for intellectual disability, regardless of seizure status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.