The transcription factor c-MYC is stabilized and activated by phosphorylation at serine 62 (S62) in breast cancer. Protein phosphatase 2A (PP2A) is a critical negative regulator of c-MYC through its ability to dephosphorylate S62. By inactivating c-MYC and other key signaling pathways, PP2A plays an important tumor suppressor function. Two endogenous inhibitors of PP2A, I2PP2A, Inhibitor-2 of PP2A (SET oncoprotein) and cancerous inhibitor of PP2A (CIP2A), inactivate PP2A and are overexpressed in several tumor types. Here we show that SET is overexpressed in about 50-60% and CIP2A in about 90% of breast cancers. Knockdown of SET or CIP2A reduces the tumorigenic potential of breast cancer cell lines both in vitro and in vivo. Treatment of breast cancer cells in vitro or in vivo with OP449, a novel SET antagonist, also decreases the tumorigenic potential of breast cancer cells and induces apoptosis. We show that this is, at least in part, due to decreased S62 phosphorylation of c-MYC and reduced c-MYC activity and target gene expression. Because of the ubiquitous expression and tumor suppressor activity of PP2A in cells, as well as the critical role of c-MYC in human cancer, we propose that activation of PP2A (here accomplished through antagonizing endogenous inhibitors) could be a novel antitumor strategy to posttranslationally target c-MYC in breast cancer.breast cancer therapy | phosphatase activator T he c-MYC (MYC) oncoprotein is overexpressed in human breast cancer and this is associated with poor clinical outcome (1, 2). Expression of MYC is regulated at multiple levels, including protein stability, which is increased in several cancer types (1,3,4). MYC stability is regulated in part by sequential and interdependent phosphorylation at two conserved residues, threonine 58 (T58) and serine 62 (S62) (5). MYC is phosphorylated at S62 (pS62) through the mitogen-activated protein kinase (MAPK) pathway or cyclin-dependent kinase (CDK) activation in response to growth signals and this modification increases its stability and oncogenic activity (5-8). When growth signals cease, GSK3, in a manner dependent upon prior phosphorylation at S62, phosphorylates T58 (pT58) (5, 6). T58 phosphorylation facilitates protein phosphatase 2A (PP2A)-mediated dephosphorylation of pS62 and recruitment of the E3 ubiquitin ligase SCF Fbw7 to initiate proteasomal destruction of MYC (9, 10). This process is facilitated by AXIN1, which helps nucleate a destruction complex for MYC at target gene promoters (11, 12). Our previous work has shown that MYC stability is increased in breast cancers and that this correlates with high pS62-and low pT58-MYC (4).PP2A is a ubiquitously expressed, heterotrimeric serinethreonine (S/T) phosphatase that mediates 30-50% of cellular S/T phosphatase activity (13). Target specificity of PP2A is directed by a variable regulatory (B) subunit, and we have shown that B56α is the isoform that directs PP2A to MYC (9, 13). Human cell transformation requires inhibition of PP2A activity and, in an siRNA screen, B56α, ...
IntroductionThe SET protein is a potent physiologic inhibitor of protein phosphatase 2A (PP2A) 1 that was isolated from a chromosomal rearrangement at 9q34 in a patient with acute undifferentiated leukemia. 2 The SET protein is overexpressed in chronic myelogenous leukemia (CML) cells, and SET protein levels are further elevated during blast crisis. 3 SET overexpression in CML cells correlates with decreased PP2A activity. 3 This indicates that many of the SET oncogenic activities may be manifest through inhibition of PP2A. PP2A plays a role in many cellular processes, including cell cycle regulation, cell proliferation, apoptosis, development, cytoskeleton dynamics, cell motility, and stem cell self-renewal. 4 In addition, PP2A is a critical tumor suppressor gene that regulates multiple important oncogenic signal transduction pathways. [5][6][7] PP2A inhibition is essential for cell transformation and tumor formation, 8,9 but overexpression of PP2A inhibitory proteins in chronic lymphocytic leukemia (CLL) has not been reported.Of the nearly 84 000 annual cases of leukemia in the Western world, B-cell CLL is the most common, accounting for ϳ 30% of adult leukemia cases. 10 Characterized by accumulation of monoclonal mature B cells, 11 the CLL clinical course is heterogeneous, with some patients experiencing an aggressive course that demands early treatment and others experiencing long survival without disease-related symptoms or ever requiring treatment. 11 Aberrant apoptosis in CLL cells correlates with arrest either in the G 0 or early G 1 phases of the cell cycle. 12,13 This defective apoptosis in CLL cells is partly the result of aberrant signaling through the Akt kinase and the ERK MAPK pathways, in which phosphorylated-Akt is necessary for survival of the leukemia cells. 14,15 The observation of aberrantly activated Akt and downstream pathways in CLL cells also suggests that the normal regulator of these pathways, PP2A, is unable to perform its normal role.We thus sought to determine whether SET is overexpressed in CLL cells relative to normal B cells. We found that SET is significantly overexpressed in CLL cells and related non-Hodgkin lymphoma (NHL) cell line cells. In freshly isolated CLL patient samples, higher cellular levels of the SET correlated with more aggressive disease requiring earlier treatment. Antagonism of SET using shRNA-mediated knockdown or pharmacologic antagonism with novel cell-permeable SET antagonist peptides induced apoptosis, reduced cellular levels of Mcl-1, and caused death of CLL and NHL cells, but normal B cells were scarcely affected by SET antagonism. We also found that pharmacologic SET antagonism in vivo inhibited growth of B-cell NHL tumor xenografts in SCID mice. Methods GeneralAll reagents were from Sigma-Aldrich unless noted otherwise. Anti-SET antibody was from Santa Cruz Biotechnology. Anti--actin, total c-Myc, pS62 c-Myc, and Mcl-1 were from Abcam. All primary antibodies were used at a 1:1000 dilution, except for -actin, which was used at 1:10 000. All secondary ...
Purpose The SET oncoprotein, a potent inhibitor of the protein phosphatase 2A (PP2A), is overexpressed in leukemia. We evaluated the efficacy of SET antagonism in chronic myeloid leukemia (CML) and acute myeloid leukemia (AML) cell lines, a murine leukemia model, and primary patient samples using OP449, a specific, cell-penetrating peptide that antagonizes SET's inhibition of PP2A. Experimental Design In vitro cytotoxicity and specificity of OP449 in CML and AML cell lines and primary samples were measured using proliferation, apoptosis and colonogenic assays. Efficacy of target inhibition by OP449 is evaluated by immunoblotting and PP2A assay. In vivo antitumor efficacy of OP449 was measured in human HL-60 xenografted murine model. Results We observed that OP449 inhibited growth of CML cells including those from patients with blastic phase disease and patients harboring highly drug-resistant BCR-ABL1 mutations. Combined treatment with OP449 and ABL1 tyrosine kinase inhibitors was significantly more cytotoxic to K562 cells and primary CD34+ CML cells. SET protein levels remained unchanged with OP449 treatment, but BCR-ABL1-mediated downstream signaling was significantly inhibited with the degradation of key signaling molecules such as BCR-ABL1, STAT5, and AKT. Similarly, AML cell lines and primary patient samples with various genetic lesions showed inhibition of cell growth after treatment with OP449 alone or in combination with respective kinase inhibitors. Finally, OP449 reduced the tumor burden of mice xenografted with human leukemia cells. Conclusions We demonstrate a novel therapeutic paradigm of SET antagonism using OP449 in combination with tyrosine kinase inhibitors for the treatment of CML and AML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.