Conflict of interest: DKF and LAM are employees of an AstraZeneca group company and may receive AstraZeneca shares as part of their usual remuneration.
Fibroblasts persist within fibrotic scar tissue and exhibit considerable phenotypic and functional plasticity. Herein, we hypothesized that scar-associated fibroblasts may be a source of stress-induced inflammatory exacerbations and pain. To test this idea, we used a human model of surgery-induced fibrosis, total knee arthroplasty (TKA). Using a combination of tissue protein expression profiling and bioinformatics, we discovered that many months after TKA, the fibrotic joint exists in a state of unresolved chronic inflammation. Moreover, the infrapatellar fat pad, a soft tissue that becomes highly fibrotic in the post-TKA joint, expresses multiple inflammatory mediators, including the monocyte chemoattractant, chemokine (C-C motif) ligand (CCL) 2, and the innate immune trigger, IL-1α. Fibroblasts isolated from the post-TKA fibrotic infrapatellar fat pad express the IL-1 receptor and on exposure to IL-1α polarize to a highly inflammatory state that enables them to stimulate the recruitment of monocytes. Blockade of fibroblast CCL2 or its transcriptional regulator NF-κB prevented IL-1α–induced monocyte recruitment. Clinical investigations discovered that levels of patient-reported pain in the post-TKA joint correlated with concentrations of CCL2 in the joint tissue, such that the chemokine is effectively a pain biomarker in the TKA patient. We propose that an IL-1α–NF-κB–CCL2 signaling pathway, operating within scar-associated fibroblasts, may be therapeutically manipulated for alleviating inflammation and pain in fibrotic joints and other tissues.
Arthrofibrosis is a fibroproliferative disease characterised by excessive deposition of extracellular matrix components intra-articularly leading to pain and restricted range of movement. Although frequently observed following total knee arthroplasty (TKA) no therapeutic options exist. A pilot study demonstrated that intra-articular injection of Anakinra, an IL-1R antagonist, improved range of movement and pain in patients with arthrofibrosis however the mechanism of action is unknown. We hypothesise that IL-1α/β will drive an inflammatory phenotype in fibroblasts isolated from the knee, therefore identifying a potential mechanism of action for Anakinra in arthrofibrosis following TKA. Fibroblasts isolated from synovial membranes and infra-patellar fat pad of patients undergoing TKA express high levels of IL-1R1. Stimulation with IL-1α/β induced a pro-inflammatory phenotype characterised by increased secretion of GMCSF, IL-6 and IL-8. No significant difference in the inflammatory response was observed between fibroblasts isolated from synovial membrane or infra-patellar fat pad. IL-1α/β treatments induced a pro-inflammatory phenotype in fibroblasts from both synovial membrane and infra-patellar fat pad and therefore Anakinra can likely have an inhibitory effect on fibroblasts present in both tissues in vivo. It is also likely that fibroblast responses in the tissues are controlled by IL-1α/β availability and not their ability to respond to it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.