The present study aims to evaluate the advantages of a master-slave robotic rehabilitation therapy in which the patient is assisted in real-time by a therapist. We have also explored if this type of strategy is applicable in a tele-rehabilitation environment. A pilot study has been carried out involving 10 patients who have performed a point-to-point rehabilitation exercise supported by three assistance modalities: fixed assistance (without therapist interaction), local therapist assistance, and remote therapist assistance in a simulated tele-rehabiliation scenario. The rehabilitation exercise will be performed using an upper-limb rehabilitation robotic device that assists the patients through force fields. The results suggest that the assistance provided by the therapist is better adapted to patient needs than fixed assistance mode. Therefore, it maximizes the patient’s level of effort, which is an important aspect to improve the rehabilitation outcomes. We have also seen that in a tele-rehabilitation environment it is more difficult to assess when to assist the patient than locally. However, the assistance suits patients better than the fixed assistance mode.
Background The aging of the population and the progressive increase in life expectancy in developed countries is leading to a high incidence of cerebrovascular diseases. Several studies have demonstrated that robot-assisted rehabilitation therapies combined with serious games can improve rehabilitation outcomes. Social interaction in the form of multiplayer games has been highlighted as a potential element to increase patient’s motivation and exercise intensity, which professionals have described as one of the determining factors in maximizing rehabilitation outcomes. Despite this, it has not been widely studied. Physiological measures have been proven as an objective tool to evaluate patients’ experience in robot-assisted rehabilitation environments. However, they have not been used to evaluate patients’ experience in multiplayer robot-assisted rehabilitation therapies. The main objective of this study is to analyze whether the interpersonal interaction inherent in a competitive game mode affects the patients’ physiological responses in robot-assisted rehabilitation environments. Methods A total of 14 patients participated in this study. The results of a competitive game mode were compared with a single-player game mode with different difficulty levels. Exercise intensity and performance were measured through parameters extracted from the game and the information provided by the robotic rehabilitation platforms. The physiological response of patients in each game mode was measured by the heart rate (HR) and the galvanic skin response (GSR). Patients were asked to fill out the IMI and the overall experience questionnaire. Results The exercise intensity results show that high-difficulty single-player game mode is similar in terms of intensity level to a competitive game mode, based on velocity values, reaction time and questionnaire results. However, the results of the physiological responses of the patients measured by GSR and HR are lower in the case of the competitive mode compared to the high-difficulty single-player game mode, obtaining results similar to those obtained in the low-difficulty single-player game mode. Conclusions Patients find the competitive game mode the most fun, which is also the mode they report experiencing the most effort and stress level. However, this subjective evaluation is not in line with the results of physiological responses. This study concludes that interpersonal interaction inherent to a competitive game mode influences patients’ physiological responses. This could mean that social interaction is an important factor to consider when interpreting the results obtained from physiological measurements.
Las previsiones más recientes determinan que el número de accidentes cerebrovasculares serán esenciales para acelerar la recuperación del paciente el empleo de nuevas terapias de rehabilitación asistidas por sistemas robóticos. Este artículo describe el diseño, desarrollo y control de un exoesqueleto ligero para el antebrazo y la muñeca utilizando un único actuador. Además, se ha llevado a cabo un estudio piloto con pacientes en el Hospital la Pedrera de Dénia con el objetivo de analizar la usabilidad del sistema, y los resultados se recogen en el presente estudio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.