Recycling of steelmaking slags has well-established applications, such as their use in cement, asphalt, or fertilizer industries. Although in some cases, such as the electric arc furnace (EAF) high-alloyed stainless-steel production, the slag’s high metal content prevents its use in such applications. This forces companies to accumulate it as waste. Using concepts such dematerialization, waste management, industrial symbiosis, and circular economy, the article drafts a conceptual framework on the best route to solving the landfilling issue, aiming at a zero-waste process re-design. An experimental part follows, with an investigation of the use of landfill slag as a substitute of limestone for the neutralization of acidic wastewater, produced by the rinsing of steel after the pickling process. Neutralization of acidic wastewater with both lime and slag samples was performed with two different methods. Two out of four slag samples tested proved their possible use, reaching desired pH values compared to lime neutralizations. Moreover, the clean waters resulting from the neutralizations with the use of both lime and slag were tested. In terms of hazardous element concentrations, neutralization with slag yielded similar results to lime. The results of these trials show that slag is a potential substitute of lime for the neutralization of acidic wastewater.
KTH Steel Scrap Model calculates material flows of iron and steel in the Swedish society based on statistics, mass balance and mass flow analysis and industry knowledge. The material flows of iron and steel were calculated for external scrap consumption, internal scrap, domestic steel scrap arising and net flow of iron and steel into the Swedish society. Model output on external steel scrap consumption and domestic steel scrap arising was compared to an earlier analysis done by Jernkontoret for the timeline 1980-2009. The results show that mass balance calculations are area wise corresponding to consumption figures based on trade statistics. In addition the difference in trend is assumed to be mainly due to stocking effect. Furthermore it is shown that mass balance and mass flow models could be used as a tool to calculate apparent scrap consumption based on crude steel production figures by process type.
Abstract:In this study a newly developed method called the Progressing and Backcasting models were used to evaluate the annual resource utilizations of steel scrap in Sweden and globally. The model results show that it is possible to assess the amounts of steel scrap available for steelmaking at a given point in time, based on statistical dynamic material flow models. By a better mapping of the available amounts of steel scrap reserves on a country basis, it is possible to ease the trade of scrap across country boarders. This in turn can optimize the supply of recyclable metals as a raw material used in the industry. The results for Swedish steel consumption show that export bans used to secure the domestic market of steel scrap do damage the internal market due to increased amounts of losses. This suggests that export bans should be lifted to optimize recycling in countries. The model results also show that the global losses of steel are higher than for an industrialized country such as Sweden. Furthermore, the results show that the Backcasting and Progressing models can be used to calculate robust forecasts on the long term availability of steel scrap assets. This information could be used for future structural plans of scrap consuming steelmaking mills and waste management facilities. Hence, it is possible to contribute to a sustainable industrial development and a circular economy.
A new mathematical model for calculating the lifetime of steel on an annual basis, called the volume correlation model is presented. The model compares the quantities of scrap collection with the steel consumption as well as evaluates the time difference between the two data sets. The lifetime of steel was calculated for the collected end-of-life steel amounts. The calculations were performed by assuming a full recovery of the steel consumption or a non-re-circulated accumulated steel stock in society denoted the full and true lifetime of steel. Based on the volume correlation model, the lifetime of steel was calculated for the total steel, low alloyed and special steel, and stainless steel in Sweden between 1898 and 2010. Previous studies on the lifetime of steel are based on experimental measurements and numerical calculations. The full lifetime of the total amount of steel from previous studies is 31 and 35 years for the years 2000 and 2006 respectively. Based on the volume correlation model the lifetime for the total steel amount, when assuming a full recovery of the material, was calculated as 34 and 37 years for these two years. This indicates that the lifetime of steel from the volume correlation model is in a similar range, but slightly higher, compared to previously reported data. The present results show that the model could be an alternative method to calculate the lifetime of steel and other recyclable materials on an annual basis. Results show that the lifetime of the total steel amount has continuously increased between 1975 and 2010. This indicates that the accumulated steel stock in society is still large enough to withstand the high collection rate of steel scrap. Furthermore, that there are as yet no lack of untapped resource of end-of-life steel scrap assets in Swedish society. List of symbolsEOL End of life m f Scrap collected m g Effective steel consumption m h Total steel consumption t 1 Time to collect the steel scrap t 2 Time to consume the same amount of steel consumption as scrap collected t 3 Time to consume the same amount of effective steel consumption as scrap collected h(t) Function on the steel consumption in society f(t) Function on the scrap collection in society g(t) Function on the effective steel use in society e Recycling rate l FULL Full lifetime of steel l TRUE True lifetime of steel
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.