Geomagnetic jerks are sudden changes in the geomagnetic field secular variation related to changes in outer core flow patterns. Finding geophysical phenomena related to geomagnetic jerks provides a vital contribution to better understand the geomagnetic field behavior. Here, we link the geomagnetic jerks occurrence with one of the most relevant features of the geomagnetic field nowadays, the South Atlantic Anomaly (SAA), which is due to the presence of reversed flux patches (RFPs) at the Core-Mantle Boundary (CMB). Our results show that minima of acceleration of the areal extent of SAA calculated using the CHAOS-7 model (CHAOS-7.2 release) coincide with the occurrence of geomagnetic jerks for the last 2 decades. In addition, a new pulse in the secular acceleration of the radial component of the geomagnetic field has been observed at the CMB, with a maximum in 2016.2 and a minimum in 2017.5. This fact, along with the minimum observed in 2017.8 in the acceleration of the areal extent of SAA, could point to a new geomagnetic jerk. We have also analyzed the acceleration of the areal extent of South American and African RFPs at the CMB related to the presence of the SAA at surface and have registered minima in the same periods when they are observed in the SAA at surface. This reinforces the link found and would indicate that physical processes that produce the RFPs, and in turn the SAA evolution, contribute to the core dynamics at the origin of jerks.
The eccentric dipole (ED) is the next approach of the geomagnetic field after the generally used geocentric dipole. Here, we analyzed the evolution of the ED during extreme events, such as the Matuyama-Brunhes polarity transition (~780 ka), the Laschamp (~41 ka) and Mono Lake (~34 ka) excursions, and during the time of two anomalous features of the geomagnetic field observed during the Holocene: the Levantine Iron Age Anomaly (LIAA, ~1000 BC) and the South Atlantic Anomaly (SAA, analyzed from ~700 AD to present day). The analysis was carried out using the paleoreconstructions that cover the time of the mentioned events (IMMAB4, IMOLEe, LSMOD.2, SHAWQ-Iron Age, and SHAWQ2k). We found that the ED moves around the meridian plane of 0–180° during the reversal and the excursions; it moves towards the region of the LIAA; and it moves away from the SAA. To investigate what information can be extracted from its evolution, we designed a simple model based on 360-point dipoles evenly distributed in a ring close to the inner core boundary that can be reversed and their magnitude changed. We tried to reproduce with our simple model the observed evolution of the ED, and the total field energy at the Earth’s surface. We observed that the modeled ED moves away from the region where we set the dipoles to reverse. If we consider that the ring dipoles could be related to convective columns in the outer core of the Earth, our simple model would indicate the potential of the displacement of the ED to give information about the regions in the outer core where changes start for polarity transitions and for the generation of important anomalies of the geomagnetic field. According to our simple model, the regions in which the most important events of the Holocene occur, or in which the last polarity reversal or excursion begin, are related to the regions of the Core Mantle Boundary (CMB), where the heat flux is low.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.