A theoretical study on the series of compounds "PhSeX", where Ph = phenyl, Se = selenium and X = Cl, Br, I, CN or SCN, is reported and compared with previously reported experimental data. The molecular geometry for these PhSeX compounds was studied at the DFT/B3LYP level of calculation by means of the 6-311G(d,p) basis set. The equilibrium structures of the molecules were dependent on the method employed to compare the known solid structures. A topological study of the calculated PhSeX species, based on the AIM theory, was carried out to gain a deeper insight into the bonding nature and to find an explanation for the structural diversity exhibited by these PhSeX compounds. The results reported herein illustrate the subtle differences in the solid-state structures of PhSeX compounds.
In this work, the topology of the ab initio electronic density charge, using the theory of atoms in molecules (AIM), developed by Bader, is studied for the n-C 4 H 11 + species, the protonated n-butane. The electronic delocalization that operates through the σ bonds in saturated molecules and specifically in protonated alkanes is studied by means of analysis of the charge density and the bond critical points. This analysis is used in order to establish a relationship among the parameters that determine the stability order found for the different species and relate them with the carbonium ions structure. Comparing these results with the i-C 4 H 11 + allow us to study the nature of the 3c-2e bonds in alkanes in greater detail, permitting the description on the σ basicity and reactivity scales in terms of structural parameters of the carbonium ions.
We study the electronic density charge topology of CH(5)(+) species 1 (C(s)()), 2 (C(s)()), and 3 (C(2)(v)) at ab initio level using the theory of atoms in molecules developed by Bader. Despite the reports of previous studies concerning carbocationic species, the methane molecule is protonated at the carbon atom, which clearly shows its pentacoordination. In addition to the fact that hydrogen atoms in the methonium molecule behave in a very fluxional fashion and that the energy difference among the species 1, 2, and 3 are very low, is important to point out that two different topological situations can be defined on the basis of our study of the topology of the electronic charge density. Then, the species 1 and 2 present a three-center-two-electron (3c-2e) bond of singular characteristics as compared with other carbocationic species, but in the species 3, the absence of a 3c-2e bond is noteworthy. This structure can be characterized through the three bond critical points found, corresponding to saddle points on the path bonds between the C-H(2,3,5) that lie in the same plane. These nuclei define a four-center interaction where the electronic delocalization produced among the sigma(C-H) bonds provide a stabilization of the three C-H bonds involved in this interaction (the remaining two C-H bonds are similar to those belonging to the nonprotonated species). Our results show that bonding situations with a higher number of atom arrays are possible in protonated hydrocarbons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.