Efforts to increase inclusion in science face multiple barriers, including cultural and social behaviors in settings such as academic conferences. Conferences are beneficial, but the culture can promote inequities and power differentials that harm historically underrepresented groups. Science suffers when conference culture propagates exclusion and discrimination that leads to attrition of scientists. Codes of conduct represent a tool to shift conference culture to better support diverse scientists and clearly detail unacceptable behaviors. We examined the prevalence and content of codes of conduct at biology conferences in the United States and Canada. We highlight how codes of conduct address issues of sexual misconduct and identity-based discrimination. Surprisingly, only 24% of the 195 surveyed conferences had codes. Of the conferences with codes, 43% did not mention sexual misconduct and 17% did not mention identity-based discrimination. Further, 26% of these conferences failed to include a way to report violations of the code and 35% lacked consequences for misconduct. We found that larger and national conferences are more likely to have codes than smaller (P = 0.04) and international or regional (P = 0.03) conferences. Conferences that lack codes risk creating and perpetuating negative environments that make underrepresented groups feel unwelcome, or worse, actively cause harm. We recommend that conferences have codes that are easily accessible, explicitly address identity-based discrimination and sexual misconduct, provide channels for anonymous impartial reporting, and contain clear consequences. These efforts will improve inclusivity and reduce the loss of scientists who have been historically marginalized.
BackgroundCompetition is a critical process that shapes plant communities and interacts with environmental constraints. There are surprising knowledge gaps related to mechanisms that belie competitive processes, though important to natural communities and agricultural systems: the contribution of different plant parts on competitive outcomes and the effect of environmental constraints on these outcomes.ObjectiveStudies that partition competition into root-only and shoot-only interactions assess whether plant parts impose different competitive intensities using physical partitions and serve as an important way to fill knowledge gaps. Given predicted drought escalation due to climate change, we focused a systematic review–including a meta-analysis on the effects of water supply and competitive outcomes.MethodsWe searched ISI Web of Science for peer-reviewed studies and found 2042 results. From which eleven suitable studies, five of which had extractable information of 80 effect sizes on 10 species to test these effects. We used a meta-analysis to compare the log response ratios (lnRR) on biomass for responses to competition between roots, shoots, and full plants at two water levels.ResultsWater availability treatment and competition treatment (root-only, shoot-only, and full plant competition) significantly interacted to affect plant growth responses (p < 0.0001). Root-only and full plant competition are more intense in low water availability (-1.2 and -0.9 mean lnRR, respectively) conditions than shoot-only competition (-0.2 mean lnRR). However, shoot-only competition in high water availability was the most intense (— 0.78 mean lnRR) compared to root-only and full competition (-0.5 and 0.61 mean lnRR, respectively) showing the opposite pattern to low water availability. These results also show that the intensity of full competition is similar to root-only competition and that low water availability intensifies root competition while weakening shoot competition.ConclusionsThe outcome that competition is most intense between roots at low water availability emphasizes the importance of root competition and these patterns of competition may shift in a changing climate, creating further urgency for further studies to fil knowledge gaps addressing issues of drought on plant interactions and communities.
1. Recent research has highlighted the existence of significant intraspecific trait variation within and among populations of plant species. This inherent variation within species means there is a wealth of trait diversity from which to source germplasm for use in ecological restoration. However, it remains unclear how to source materials from this pool of trait diversity in order to achieve desired outcomes and support ecosystem function in a restoration context. 2.We provide a framework to study the structure of trait variation across populations and genotypes in an effort to bridge functional trait research with the sourcing of native plant materials for restoration. We investigated the structure of intraspecific functional trait variation in three forb species used in restoration on the Colorado Plateau to (a) understand the structure of functional trait variation within and among populations, and (b) determine if individual and multivariate functional traits differ between populations while accounting for trait variation within and among genotypes.3. We found considerable functional trait variation at all sampling levels, with variation within populations often surpassing variation among populations. Still, we observed population-level differences in trait values in 8 of the 12 species-by-trait combinations and populations largely segregated in multivariate trait space. 4. Synthesis and applications. Using micropropagation techniques, we uncovered population-level differences in functional trait variation, suggesting that mixing populations to create restoration germplasm following a regional admixture provenancing approach could lead to increased functional diversity in restorations. However, the substantial trait variation identified within some populations of our study species also suggests a similar potential when utilizing genotypically diverse material from even a single population. Further research on these and other species is needed to understand the structure of intraspecific functional trait variation and how it impacts ecosystem function. The approach outlined in this study can assist researchers in assessing the underlying trait variation present in various restoration materials and provide managers with more detailed information that can help make germplasm sourcing decisions. K E Y W O R D SColorado Plateau, germplasm, intraspecific trait variation, micropropagation, plant functional traits, regional admixture provenancing, restoration, seed sourcing | 865Journal of Applied Ecology ZELDIN Et aL. S U PP O RTI N G I N FO R M ATI O NAdditional supporting information may be found online in the Supporting Information section. How to cite this article: Zeldin J, Lichtenberger TM, Foxx AJ, Webb Williams E, Kramer AT. Intraspecific functional trait structure of restoration-relevant species: Implications for restoration seed sourcing. J Appl Ecol. 2020;57:864-874.
This article proposes ways to improve inclusion and training in microbiome science and advocates for resource expansion to improve scientific capacity across institutions and countries. Specifically, we urge mentors, collaborators, and decision-makers to commit to inclusive and accessible research and training that improves the quality of microbiome science and begins to rectify long-standing inequities imposed by wealth disparities and racism that stall scientific progress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.