After close to two decades of research and development, superconducting circuits have emerged as a rich platform for both quantum computation and quantum simulation. Lattices of superconducting coplanar waveguide (CPW) resonators have been shown to produce artificial materials for microwave photons, where weak interactions can be introduced either via non-linear resonator materials or strong interactions via qubit-resonator coupling. Here, we highlight the previouslyoverlooked property that these lattice sites are deformable and allow the realization of tight-binding lattices which are unattainable, even in conventional solid-state systems. In particular, we show that networks of CPW resonators can create a new class of materials which constitute regular lattices in an effective hyperbolic space with constant negative curvature. We present numerical simulations of a series of hyperbolic analogs of the kagome lattice which show unusual densities of states with a spectrally-isolated degenerate flat band. We also present a proof-of-principle experimental realization of one of these lattices. This paper represents the first step towards on-chip quantum simulation of materials science and interacting particles in curved space. arXiv:1802.09549v2 [quant-ph]
Optical cavity QED provides a platform with which to explore quantum many-body physics in drivendissipative systems. Single-mode cavities provide strong, infinite-range photon-mediated interactions among intracavity atoms. However, these global all-to-all couplings are limiting from the perspective of exploring quantum many-body physics beyond the mean-field approximation. The present work demonstrates that local couplings can be created using multimode cavity QED. This is established through measurements of the threshold of a superradiant, self-organization phase transition versus atomic position. Specifically, we experimentally show that the interference of near-degenerate cavity modes leads to both a strong and tunable-range interaction between Bose-Einstein condensates (BECs) trapped within the cavity. We exploit the symmetry of a confocal cavity to measure the interaction between real BECs and their virtual images without unwanted contributions arising from the merger of real BECs. Atom-atom coupling may be tuned from short range to long range. This capability paves the way toward future explorations of exotic, strongly correlated systems such as quantum liquid crystals and driven-dissipative spin glasses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.