Candida glabrata is the second leading cause of candidemia in the United States. Its high-level resistance to triazole antifungal drugs has led to the increased use of the echinocandin class of antifungal agents for primary therapy of these infections. We monitored C. glabrata bloodstream isolates from a population-based surveillance study for elevated echinocandin MIC values (MICs of >0.25 g/ml). From the 490 C. glabrata isolates that were screened, we identified 16 isolates with an elevated MIC value (2.9% of isolates from Atlanta and 2.0% of isolates from Baltimore) for one or more of the echinocandin drugs caspofungin, anidulafungin, and micafungin. All of the isolates with elevated MIC values had a mutation in the previously identified hot spot 1 of either the glucan synthase FKS1 (n ؍ 2) or FKS2 (n ؍ 14) gene. No mutations were detected in hot spot 2 of either FKS1 or FKS2. The predominant mutation was mutation of FKS2-encoded serine 663 to proline (S663P), found in 10 of the isolates with elevated echinocandin MICs. Two of the mutations, R631G for FKS1 and R665G for FKS2, have not been reported previously for C. glabrata. Multilocus sequence typing indicated that the predominance of the S663P mutation was not due to the clonal spread of a single sequence type. With a rising number of echinocandin therapy failures reported, it is important to continue to monitor rates of elevated echinocandin MIC values and the associated mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.