Nucleic acid staining dyes are used for detecting nucleic acids in electrophoresis gels. Historically, the most common dye used for gel staining is ethidium bromide, however due to its toxicity and mutagenicity other dyes that are safer to the user and the environment are preferred. This Short Communication details the properties of dyes now available and their sensitivity for detection of DNA and their ability to permeate the cell membrane. It was found that GelRed™ was the most sensitive and safest dye to use with UV light excitation, and both GelGreen™ and Diamond™ Nucleic Acid Dye were sensitive and the safer dyes using blue light excitation.
It is known that DNA can be deposited onto a surface by touch yet few means have been developed for its in situ detection. Collecting touch-DNA samples can be difficult as likely locations rather than the DNA is targeted leading to many samples that are submitted to a forensic laboratory containing little or no DNA. A range of dyes are available that bind to DNA at high specificity for application within the laboratory and here we report on the use of these dyes to detect latent DNA on various substrates and within biological samples. Six common nucleic acid-binding dyes were selected due to their increase in fluorescence when in the presence of double stranded-DNA; four of the six dyes are permeable to cell membranes. The fluorescence from dye/DNA complex was detected using a high intensity light source, the Polilight 1 (PL500), an excitation wavelength of 490 nm and emission observed/recorded through interference filters centred at 530 nm or 550 nm depending on the dye emission. The samples were visualised under a fluorescent microscope (Nikon Optiphot) using a B2A filter cube. The detection limit of DNA was determined for the selected dyes along with the optimal conditions, such as buffer composition and dye concentration for a range of surfaces. The ability for the dyes to detect DNA within biological samples such as saliva, hair, skin, fingermarks, and hair follicles was also determined. 2015 Elsevier Ireland Ltd. All rights reserved.
Here, we evaluate Diamond Nucleic Acid Dye (DD) for use in quantitative PCR (qPCR) applications. Although DD is a commercially available stain for detection of DNA separated by gel electrophoresis, its use as a detection dye in qPCR has yet to be described. To determine if DD can be used in qPCR, we investigated its inhibitory effects on qPCR at concentrations ranging 0.1-2.5×. Serial dilution of DNA was used to determine the efficiency, sensitivity, and linearity of DD-generated qPCR data in comparison to other commonly used fluorescent dyes such as SYBR Green (SG), EvaGreen (EG), and BRYT Green (BG). DD was found to be comparable with other dyes for qPCR applications, with an R2 value >0.9 and an efficiency of 0.83. Mitochondrial DNA (mtDNA) target signals were successfully produced by DD over a DNA dilution range of ~28 ng- 0.28 pg, demonstrating comparable sensitivity to the other dyes investigated. Cq values obtained using DD were lower than those using EG by almost 7 cycles. We conclude that Diamond Nucleic Acid Dye is a cheaper, less toxic alternative for qPCR applications.
We report on the effects of six dyes used in the detection of DNA on the process of DNA extraction, amplification, and detection of STR loci. While dyes can be used to detect the presence of DNA, their use is restricted if they adversely affect subsequent DNA typing processes. Diamond™ Nucleic Acid Dye, GelGreen™, GelRed™, RedSafe™, SYBR(®) Green I, and EvaGreen™ were evaluated in this study. The percentage of dye removed during the extraction process was determined to be: 70.3% for SYBR(®) Green I; 99.6% for RedSafe™; 99.4% for EvaGreen™; 52.7% for Diamond™ Dye; 50.6% for GelRed™, and; could not be determined for GelGreen™. It was then assumed that the amount of dye in the fluorescent quantification assay had no effect on the DNA signal. The presence of all six dyes was then reviewed for their effect on DNA extraction. The t-test showed no significant difference between the dyes and the control. These extracts were then STR profiled and all dyes and control produced full DNA profiles. STR loci in the presence of GelGreen(TM) at 1X concentration showed increased amplification products in comparison to the control samples. Full STR profiles were detected in the presence of EvaGreen™ (1X), although with reduced amplification products. RedSafe™ (1X), Diamond™ Dye (1X), and SYBR(®) Green I (1X) all exhibited varying degrees of locus drop-out with GelRed™ generating no loci at all. We provide recommendations for the best dye to visualize the presence of DNA profile as a biological stain and its subsequent amplification and detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.