BackgroundFomite mediated transmission can be an important pathway causing significant disease transmission in number of settings such as schools, daycare centers, and long-term care facilities. The importance of these pathways relative to other transmission pathways such as direct person-person or airborne will depend on the characteristics of the particular pathogen and the venue in which transmission occurs. Here we analyze fomite mediated transmission through a comparative analysis across multiple pathogens and venues.MethodsWe developed and analyzed a compartmental model that explicitly accounts for fomite transmission by including pathogen transfer between hands and surfaces. We consider two sub-types of fomite-mediated transmission: direct fomite (e.g., shedding onto fomites) and hand-fomite (e.g., shedding onto hands and then contacting fomites). We use this model to examine three pathogens with distinct environmental characteristics (influenza, rhinovirus, and norovirus) in four venue types. To parameterize the model for each pathogen we conducted a thorough literature search.ResultsBased on parameter estimates from the literature the reproductive number () for the fomite route for rhinovirus and norovirus is greater than 1 in nearly all venues considered, suggesting that this route can sustain transmission. For influenza, on the other hand, for the fomite route is smaller suggesting many conditions in which the pathway may not sustain transmission. Additionally, the direct fomite route is more relevant than the hand-fomite route for influenza and rhinovirus, compared to norovirus. The relative importance of the hand-fomite vs. direct fomite route for norovirus is strongly dependent on the fraction of pathogens initially shed to hands. Sensitivity analysis stresses the need for accurate measurements of environmental inactivation rates, transfer efficiencies, and pathogen shedding.ConclusionsFomite-mediated transmission is an important pathway for the three pathogens examined. The effectiveness of environmental interventions differs significantly both by pathogen and venue. While fomite-based interventions may be able to lower for fomites below 1 and interrupt transmission, rhinovirus and norovirus are so infectious () that single environmental interventions are unlikely to interrupt fomite transmission for these pathogens.Electronic supplementary materialThe online version of this article (10.1186/s12879-018-3425-x) contains supplementary material, which is available to authorized users.
BackgroundSerology tests can identify previous infections and facilitate estimation of the number of total infections. However, immunoglobulins targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported to wane below the detectable level of serological assays. We estimate the cumulative incidence of SARS-CoV-2 infection from serology studies, accounting for expected levels of antibody acquisition (seroconversion) and waning (seroreversion), and apply this framework using data from New York City (NYC) and Connecticut.MethodsWe estimated time from seroconversion to seroreversion and infection fatality ratio (IFR) using mortality data from March-October 2020 and population-level cross-sectional seroprevalence data from April-August 2020 in NYC and Connecticut. We then estimated the daily seroprevalence and cumulative incidence of SARS-CoV-2 infection.FindingsThe estimated average time from seroconversion to seroreversion was 3-4 months. The estimated IFR was 1.1% (95% credible interval: 1.0-1.2%) in NYC and 1.4% (1.1-1.7%) in Connecticut. The estimated daily seroprevalence declined after a peak in the spring. The estimated cumulative incidence reached 26.8% (24.2-29.7%) and 8.8% (7.1-11.3%) at the end of September in NYC and Connecticut, higher than maximum seroprevalence measures (22.1% and 6.1%), respectively.InterpretationThe cumulative incidence of SARS-CoV-2 infection is underestimated using cross-sectional serology data without adjustment for waning antibodies. Our approach can help quantify the magnitude of underestimation and adjust estimates for waning antibodies.FundingThis study was supported by the US National Science Foundation and the National Institute of Allergy and Infectious Diseases.
Background: Projected increases in extreme weather may change relationships between rain-related climate exposures and diarrheal disease. Whether rainfall increases or decreases diarrhea rates is unclear based on prior literature. The concentration-dilution hypothesis suggests that these conflicting results are explained by the background level of rain: Rainfall following dry periods can flush pathogens into surface water, increasing diarrhea incidence, whereas rainfall following wet periods can dilute pathogen concentrations in surface water, thereby decreasing diarrhea incidence. Objectives: In this analysis, we explored the extent to which the concentration-dilution hypothesis is supported by published literature. Methods: To this end, we conducted a systematic search for articles assessing the relationship between rain, extreme rain, flood, drought, and season (rainy vs. dry) and diarrheal illness. Results: A total of 111 articles met our inclusion criteria. Overall, the literature largely supports the concentration-dilution hypothesis. In particular, extreme rain was associated with increased diarrhea when it followed a dry period [incidence rate ratio ; 95% confidence interval (CI): 1.05, 1.51], with a tendency toward an inverse association for extreme rain following wet periods, albeit nonsignificant, with one of four relevant studies showing a significant inverse association ( ; 95% CI: 0.771, 1.08). Incidences of bacterial and parasitic diarrhea were more common during rainy seasons, providing pathogen-specific support for a concentration mechanism, but rotavirus diarrhea showed the opposite association. Information on timing of cases within the rainy season (e.g., early vs. late) was lacking, limiting further analysis. We did not find a linear association between nonextreme rain exposures and diarrheal disease, but several studies found a nonlinear association with low and high rain both being associated with diarrhea. Discussion: Our meta-analysis suggests that the effect of rainfall depends on the antecedent conditions. Future studies should use standard, clearly defined exposure variables to strengthen understanding of the relationship between rainfall and diarrheal illness. https://doi.org/10.1289/EHP6181
Supplemental Digital Content is available in the text.
In April 2020, the incidence of norovirus outbreaks reported to the National Outbreak Reporting System (NORS) dramatically declined. We used regression models to determine if this decline was best explained by underreporting, seasonal trends, or reduced exposure due to non-pharmaceutical interventions (NPIs) implemented for SARS-CoV-2 using data from 9 states from July 2012–July 2020. The decline in norovirus outbreaks was significant for all 9 states and underreporting or seasonality are unlikely to be the primary explanations for these findings. These patterns were similar across a variety of settings. NPIs appear to have reduced incidence of norovirus, a non-respiratory pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.