Background Patient representation learning aims to learn features, also called representations, from input sources automatically, often in an unsupervised manner, for use in predictive models. This obviates the need for cumbersome, time- and resource-intensive manual feature engineering, especially from unstructured data such as text, images, or graphs. Most previous techniques have used neural network–based autoencoders to learn patient representations, primarily from clinical notes in electronic medical records (EMRs). Knowledge graphs (KGs), with clinical entities as nodes and their relations as edges, can be extracted automatically from biomedical literature and provide complementary information to EMR data that have been found to provide valuable predictive signals. Objective This study aims to evaluate the efficacy of collective matrix factorization (CMF), both the classical variant and a recent neural architecture called deep CMF (DCMF), in integrating heterogeneous data sources from EMR and KG to obtain patient representations for clinical decision support tasks. Methods Using a recent formulation for obtaining graph representations through matrix factorization within the context of CMF, we infused auxiliary information during patient representation learning. We also extended the DCMF architecture to create a task-specific end-to-end model that learns to simultaneously find effective patient representations and predictions. We compared the efficacy of such a model to that of first learning unsupervised representations and then independently learning a predictive model. We evaluated patient representation learning using CMF-based methods and autoencoders for 2 clinical decision support tasks on a large EMR data set. Results Our experiments show that DCMF provides a seamless way for integrating multiple sources of data to obtain patient representations, both in unsupervised and supervised settings. Its performance in single-source settings is comparable with that of previous autoencoder-based representation learning methods. When DCMF is used to obtain representations from a combination of EMR and KG, where most previous autoencoder-based methods cannot be used directly, its performance is superior to that of previous nonneural methods for CMF. Infusing information from KGs into patient representations using DCMF was found to improve downstream predictive performance. Conclusions Our experiments indicate that DCMF is a versatile model that can be used to obtain representations from single and multiple data sources and combine information from EMR data and KGs. Furthermore, DCMF can be used to learn representations in both supervised and unsupervised settings. Thus, DCMF offers an effective way of integrating heterogeneous data sources and infusing auxiliary knowledge into patient representations.
BACKGROUND Patient Representation Learning aims to learn features, also called representations, from input sources automatically, often in an unsupervised manner, for use in predictive models. This obviates the need for cumbersome, time- and resource-intensive manual feature engineering, especially from unstructured data such as text, images or graphs. Most previous techniques have used neural network based autoencoders to learn patient representations, primarily from clinical notes in Electronic Medical Records (EMR). Knowledge Graphs (KG), with clinical entities as nodes and their relations as edges, can be extracted automatically from biomedical literature, and provide complementary information to EMR data that have been found to provide valuable predictive signals. OBJECTIVE We evaluate the efficacy of Collective Matrix Factorization (CMF) - both classical variants and a recent neural architecture called Deep CMF (DCMF) - in integrating heterogeneous data sources from EMR and KG to obtain patient representations for Clinical Decision Support Tasks. METHODS Using a recent formulation of obtaining graph representations through matrix factorization, within the context of CMF, we infuse auxiliary information during patient representation learning. We also extend the DCMF architecture to create a task-specific end-to-end model that learns to simultaneously find effective patient representations and predict. We compare the efficacy of such a model to that of first learning unsupervised representations and then independently learning a predictive model. We evaluate patient representation learning using CMF-based methods and autoencoders for two clinical decision support tasks on a large EMR dataset. RESULTS Our experiments show that DCMF provides a seamless way to integrate multiple sources of data to obtain patient representations, both in unsupervised and supervised settings. Its performance in single-source settings is comparable to that of previous autoencoder-based representation learning methods. When DCMF is used to obtain representations from a combination of EMR and KG, where most previous autoencoder-based methods cannot be used directly, its performance is superior to that of previous non-neural methods for CMF. Infusing information from KGs into patient representations using DCMF was found to improve downstream predictive performance. CONCLUSIONS Our experiments indicate that DCMF is a versatile model that can be used to obtain representations from single and multiple data sources, and to combine information from EMR data and Knowledge Graphs. Further, DCMF can be used to learn representations in both supervised and unsupervised settings. Thus, DCMF offers an effective way of integrating heterogeneous data sources and infusing auxiliary knowledge into patient representations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.