Heavy, brittle and very hard deposits built on the first row vanes have caused severe erosion of all the first stage blades of a gas turbine during operation with washed and treated heavy residual fuel oil. The high sulphur (3.5–4.0 wt.%) fuel oil consumed by the turbine is also high in vanadium (280–290 ppm) and asphaltene content. In the present work the results of an investigation on the physical and chemical characteristics of erosive ash deposits as a function of operation conditions and fuel oil characteristics are presented. The structure and chemistry of deposits were studied by chemical analysis, x-ray diffraction, microanalysis and scanning electron microscopy. It was confirmed that deposit friability is enhanced by its MgSO4 content and that its hardness depends on the amount of MgO present. It was also found a clear correlation between the gas inlet temperature and the size of the ash particles deposited, and on the degree of compactness and hardness of the deposit. The role of the unburned particles, unavoidable in the combustion of heavy fuel oils, is discussed in relation to their influence on the effectiveness of the magnesium inhibitor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.