Human genomic clones that span the entire protein S expressed gene (PS alpha) and the 3' two-thirds of the protein S pseudogene (PS beta) have been isolated and characterized. The PS alpha gene is greater than 80 kilobases in length and contains 14 introns and 15 exons, as well as 6 repetitive "Alu" sequences. Exons I and XV contain 112 and 1139 bp 5' and 3' noncoding segments in addition to the amino and carboxyl termini, respectively. Exons I-VIII encode protein segments that are homologous to the vitamin K dependent clotting proteins and are bounded by introns whose position and type are identical with other members of this protein family. Exons IX-XV encode protein segments homologous to sex hormone binding globulin (SHBG) and are bounded by introns of identical type and position as in the SHBG gene. Genomic clones for the PS beta gene cover a distance of greater than 55 kilobases and contain segments corresponding to amino acids 46-635 of the mature protein and the 1.1-kb 3' noncoding region of the cDNA. The presence of multiple base changes in the coding portions of this gene, resulting in termination codons and frame shifts, suggests that it is a pseudogene. Comparison of DNA sequences for the two genes reveals 97% identity for coding and 3' noncoding, and 95.4% for intronic regions, suggesting divergence of the two genes is a relatively recent event.
Phosphoenolpyruvate carboxykinase (PEPCK) activity is present along the length of rat small intestine and in enterocytes throughout the villus-crypt axis. There is no detectable activity in submucosal layers. Messenger RNA encoding PEPCK is detectable in rat intestinal mucosa and the relative abundance increases markedly (3- to 8-fold) during starvation or streptozotocin-diabetes. However, these changes are not matched by changes in enzyme activity which are only slightly increased (1.5-fold). The intestine of neonatal rats possesses relatively high amounts of both PEPCK activity and mRNA. Based on the distribution and regulation of intestinal PEPCK, it is proposed that the enzyme does not play a significant role in either gluconeogenesis or glutamine catabolism in adult rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.