The phytoplankton of the River Lujan (Buenos Aires, Argentina) was studied for a period of 18 months, together with physical and chemical variables, in relation to a pollution gradient. 167 taxa were recorded within a seasonal succession characterized by dominance of diatoms with a brief summer green algae facies. A combination of several biotic indices and multivariate analysis was employed to assess the impact of pollution on the phytoplankton community. The biotic indices used were species diversity and richness, algal quotients (green algae/diatom ratio, Centrales/Pennales ratio) and the SD succession rate index. Multivariate procedures included cluster analysis and ordination by PCA of both species and samples, stepwise discriminant analysis and multiple discriminant analysis of variance (MANOVA). Results indicate that community dynamism is attenuated at the more polluted sites, concomitant with an increased predominance of a broad-tolerance algal assemblage, co-dominated by Cyclotella meneghiniana and Nitzschia stagnorum. The changes in the community structure and dynamics described herein involved alterations in the distribution and relative proportions of the algae, rather than modifications in the basic species composition. These changes may not be readily detectable by methods which over-simplify the ecological information, such as systems of indicator species and biotic indices, designed to assess the degree of pollution. The suitability of multivariate analysis and biotic indices in river phytoplankton studies is further discussed.
In order to assess the effects of the introduced bivalve Limnoperna fortunei on watercolumn properties of Salto Grande reservoir, experiments were conducted using six 400 L mesocosms: 2 with 100 mussels, 2 with 300 mussels, and 2 controls (without mussels). At 0, 1, 2, 3, 7, 14, 21, 28, and 35 days we measured nutrient and chlorophyll a concentrations, counted and identified the phytoplankton, and estimated the density, size, and number of cells of the colonies of Microcystis spp. Cumulative periphyton growth and total accumulated sediments were assessed in all enclosures at the end of the experiment. Throughout the experiment, in the controls ammonia and phosphates dropped to near zero, whereas in the mesocosms with L. fortunei they increased two-to tenfold. Nitrates decreased in all mesocosms. In the presence of the mussel, chlorophyll a and algal cells dropped until day 3 increasing thereafter, whereas in the controls they increased from day 0. Periphyton growth and sediment accumulation were significantly higher in the mesocosms with mussels that in the controls. Cell density, proportion of colonial cells and colony size of Microcystis spp. increased in all enclosures, but these increases were dramatically (and very significantly) higher in enclosures with 100 and, especially, with 300 mussels, than in the controls. Our results indicate that L. fortunei modifies nutrient concentrations and proportions, and promotes aggregation of solitary Microcystis spp. cells into colonies; both these effects can favor blooms of this often noxious cyanobacteria.
Since it was commercially introduced in 1974, glyphosate has been one of the most commonly used herbicides in agriculture worldwide, and there is growing concern about its adverse effects on the environment. Assuming that glyphosate may increase the organic turbidity of water bodies, we evaluated the effect of a single application of 2.4 ± 0.1 mg l(-1) of glyphosate (technical grade) on freshwater bacterioplankton and phytoplankton (pico, micro, and nanophytoplankton) and on the physical and chemical properties of the water. We used outdoor experimental mesocosms under clear and oligotrophic (phytoplanktonic chlorophyll a = 2.04 μg l(-1); turbidity = 2.0 NTU) and organic turbid and eutrophic (phytoplanktonic chlorophyll a = 50.3 μg l(-1); turbidity = 16.0 NTU) scenarios. Samplings were conducted at the beginning of the experiment and at 1, 8, 19, and 33 days after glyphosate addition. For both typologies, the herbicide affected the abiotic water properties (with a marked increase in total phosphorus), but it did not affect the structure of micro and nanophytoplankton. In clear waters, glyphosate treatment induced a trend toward higher bacteria and picoeukaryotes abundances, while there was a 2 to 2.5-fold increase in picocyanobacteria number. In turbid waters, without picoeukaryotes at the beginning of the experiment, glyphosate decreased bacteria abundance but increased the number of picocyanobacteria, suggesting a direct favorable effect. Moreover, our results show that the impact of the herbicide was observed in microorganisms from both oligo and eutrophic conditions, indicating that the impact would be independent of the trophic status of the water body.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.