BackgroundHere, we present an R package for entropy/variability analysis that facilitates prompt and convenient data extraction, manipulation and visualization of protein features from multiple sequence alignments. BALCONY can work with residues dispersed across a protein sequence and map them on the corresponding alignment of homologous protein sequences. Additionally, it provides several entropy and variability scores that indicate the conservation of each residue.ResultsOur package allows the user to visualize evolutionary variability by locating the positions most likely to vary and to assess mutation candidates in protein engineering.ConclusionIn comparison to other R packages BALCONY allows conservation/variability analysis in context of protein structure with linkage of the appropriate metrics with physicochemical features of user choice.Availability: CRAN project page: https://cran.r-project.org/package=BALCONY and our website: http://www.tunnelinggroup.pl/software/ for major platforms: Linux/Unix, Windows and Mac OS X.Electronic supplementary materialThe online version of this article (10.1186/s12859-018-2294-z) contains supplementary material, which is available to authorized users.
(1) Background: The data from independent gene expression sources may be integrated for the purpose of molecular diagnostics of cancer. So far, multiple approaches were described. Here, we investigated the impacts of different data fusion strategies on classification accuracy and feature selection stability, which allow the costs of diagnostic tests to be reduced. (2) Methods: We used molecular features (gene expression) combined with a feature extracted from the independent clinical data describing a patient’s sample. We considered the dependencies between selected features in two data fusion strategies (early fusion and late fusion) compared to classification models based on molecular features only. We compared the best accuracy classification models in terms of the number of features, which is connected to the potential cost reduction of the diagnostic classifier. (3) Results: We show that for thyroid cancer, the extracted clinical feature is correlated with (but not redundant to) the molecular data. The usage of data fusion allows a model to be obtained with similar or even higher classification quality (with a statistically significant accuracy improvement, a p-value below 0.05) and with a reduction in molecular dimensionality of the feature space from 15 to 3–8 (depending on the feature selection method). (4) Conclusions: Both strategies give comparable quality results, but the early fusion method provides better feature selection stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.