Key Points• Excitation of human pharyngeal motor cortex can be induced by pharyngeal electrical stimulation (PES) and swallowing carbonated water (CW). This study was undertaken to investigate the effect of synchronously combining PES with swallowing CW.• Pharyngeal cortical and brainstem excitation was investigated using transcranial or transcutaneous magnetic stimulation (TMS).• PES was most effective at inducing excitation in the pharyngeal motor cortex. Combination of PES and CW were less effective in producing cortical excitability but induced transient excitation in the brainstem. Our data indicate the PES may be more advantageous than combined swallowing stimuli for driving cortical changes in the swallowing system which may be useful in dysphagia rehabilitation. AbstractBackground Previous reports have revealed that excitation of human pharyngeal motor cortex can be induced by pharyngeal electrical stimulation (PES) and swallowing carbonated water (CW). This study investigated whether combining PES with swallowing (of still water, SW or CW) can potentiate this excitation in either cortical and/or brain stem areas assessed with transcranial and transcutaneous magnetic stimulation (TMS). Methods Fourteen healthy volunteers participated and were intubated with an intraluminal catheter to record pharyngeal electromyography and deliver PES. Each participant underwent baseline corticopharyngeal, hand and craniobulbar motor-evoked potential (MEP) measurements. Subjects were then randomized to receive each of four 10-min interventions (PES only, Sham-PES+CW, PES+CW, and PES+SW). Corticobulbar, craniobulbar and hand MEPs were then remeasured for up to 60 min and data analyzed using ANOVA and post hoc t-tests. Key Results A two-way rmANOVA for Interventions 9 Time-point showed a significant corticopharyngeal interaction (p = 0.010). One-way ANOVA with post hoc t-tests indicated significant cortical changes with PES only at 45 (p = 0.038) and 60 min (p = 0.023) and ShamPES+CW immediately (p = 0.008) but not with PES+CW or PES+SW. By contrast, there were immediate craniobulbar amplitude changes only with PES+CW (p = 0.020) which were not sustained. Conclusions & Inferences We conclude that only PES produced long-term changes in corticopharyngeal excitability whereas combination stimuli were less effective. Our data suggest that PES alone rather than in combination, may be better for the patients who have difficulty in performing voluntary swallows.
In recent years, repetitive transcranial magnetic stimulation, a technique used to produce human central neurostimulation, has attracted increased interest and been applied experimentally in the treatment of dysphagia. This review presents a synopsis of the current research for the application of repetitive transcranial magnetic stimulation (rTMS) on dysphagia. Here, we review the mechanisms underlying the effects of rTMS and the results from studies on both healthy volunteers and dysphagic patients. The clinical studies on dysphagia have primarily focussed on dysphagia post-stroke. We discuss why it is difficult to draw conclusions for the efficacy of this neurostimulation technique, given the major differences between studies. The intention here is to stimulate potential research questions not yet investigated for the application of rTMS on dysphagic patients prior to their translation into clinical practice for dysphagia rehabilitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.