The competitive abilities of Sinorhizobium meliloti mutant strains containing lesions in the PHB synthesis (phbC) and degradation (bdhA) pathways were compared. While the bdhA mutant showed no noticeable symbiotic defects on alfalfa host plants when inoculated alone, in mixed inoculation experiments it was found to be less competitive than the wild type for nodule occupancy. Long-term survival of the bdhA mutant on a carbon-limiting medium was not affected. However, when subjected to competition with the wild-type strain in periodic subculturing through alternating carbon-limiting and carbon-excess conditions, the bdhA mutant performed poorly. A more severe defect in competition for growth and nodule occupancy was observed with a mutant unable to synthesize PHB (phbC). These results indicate that the ability to efficiently deposit cellular PHB stores is a key factor influencing competitive survival under conditions of fluctuating nutrient carbon availability, whereas the ability to use these stores is less important.
BackgroundS. meliloti forms indeterminate nodules on the roots of its host plant alfalfa (Medicago sativa). Bacteroids of indeterminate nodules are terminally differentiated and, unlike their non-terminally differentiated counterparts in determinate nodules, do not accumulate large quantities of Poly-3-hydroxybutyrate (PHB) during symbiosis. PhaZ is in intracellular PHB depolymerase; it represents the first enzyme in the degradative arm of the PHB cycle in S. meliloti and is the only enzyme in this half of the PHB cycle that remains uncharacterized.ResultsThe S. meliloti phaZ gene was identified by in silico analysis, the ORF was cloned, and a S. meliloti phaZ mutant was constructed. This mutant exhibited increased PHB accumulation during free-living growth, even when grown under non-PHB-inducing conditions. The phaZ mutant demonstrated no reduction in symbiotic capacity; interestingly, analysis of the bacteroids showed that this mutant also accumulated PHB during symbiosis. This mutant also exhibited a decreased capacity to tolerate long-term carbon starvation, comparable to that of other PHB cycle mutants. In contrast to other PHB cycle mutants, the S. meliloti phaZ mutant did not exhibit any decrease in rhizosphere competitiveness; however, this mutant did exhibit a significant increase in succinoglycan biosynthesis.ConclusionsS. meliloti bacteroids retain the capacity to synthesize PHB during symbiosis; interestingly, accumulation does not occur at the expense of symbiotic performance. phaZ mutants are not compromised in their capacity to compete for nodulation in the rhizosphere, perhaps due to increased succinoglycan production resulting from upregulation of the succinoglycan biosynthetic pathway. The reduced survival capacity of free-living cells unable to access their accumulated stores of PHB suggests that PHB is a crucial metabolite under adverse conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.