BackgroundScintillation camera imaging is used for treatment planning and post-treatment dosimetry in liver radioembolization (RE). In yttrium-90 (90Y) RE, scintigraphic images of technetium-99m (99mTc) are used for treatment planning, while 90Y Bremsstrahlung images are used for post-treatment dosimetry. In holmium-166 (166Ho) RE, scintigraphic images of 166Ho can be used for both treatment planning and post-treatment dosimetry. The aim of this study is to quantitatively evaluate and compare the imaging characteristics of these three isotopes, in order that imaging protocols can be optimized and RE studies with varying isotopes can be compared.Methodology/Principal FindingsPhantom experiments were performed in line with NEMA guidelines to assess the spatial resolution, sensitivity, count rate linearity, and contrast recovery of 99mTc, 90Y and 166Ho. In addition, Monte Carlo simulations were performed to obtain detailed information about the history of detected photons. The results showed that the use of a broad energy window and the high-energy collimator gave optimal combination of sensitivity, spatial resolution, and primary photon fraction for 90Y Bremsstrahlung imaging, although differences with the medium-energy collimator were small. For 166Ho, the high-energy collimator also slightly outperformed the medium-energy collimator. In comparison with 99mTc, the image quality of both 90Y and 166Ho is degraded by a lower spatial resolution, a lower sensitivity, and larger scatter and collimator penetration fractions.Conclusions/SignificanceThe quantitative evaluation of the scintillation camera characteristics presented in this study helps to optimize acquisition parameters and supports future analysis of clinical comparisons between RE studies.
X-ray radiography is a commonly used diagnostic method for premature neonates. However, because of higher radiosensitivity and young age, premature neonates are more sensitive to the detrimental effects of ionising radiation. Therefore, it is important to monitor and optimise radiation doses at the neonatal intensive care unit (NICU). The number of x-ray examinations, dose-area product (DAP) and effective doses are evaluated for three Dutch NICUs using digital flat panel detectors. Thorax, thorax-abdomen and abdomen protocols are included in this study. Median number of examinations is equal to 1 for all three hospitals. Median DAP ranges between 0.05 and 1.02 μGy m2 for different examination types and different weight categories. These examinations result in mean effective doses between 4 ± 4 and 30 ± 10 μSv per examination. Substantial differences in protocols and doses can be observed between hospitals. This emphasises the need for up-to-date reference levels formulated specifically for premature neonates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.