The distribution of the studies conducted between 2011-2021 in the fields of (Electrooculography) EOG and eye movements, EOG and wheelchair, EOG and eye angle, EOG and sleep state, EOG and mood estimation and EOG and game application was determined according to years, and the most cited studies were examined and presented. The study areas are listed as Eye Movement Classification, Wheelchair, Sleep state, Eye Angle, Mood State and Game Applications from the most to the least number of articles. When we examine in terms of the number of citations, they are listed as Sleeping state, Eye Movement Classification, Wheelchair, Eye Angle, Mood State and Game Applications, from the most to the least. In these studies, it has been tried to make the lives of people who have become disabled in various ways better by using the brain-computer interface with machine learning.
Lung cancer is a very deadly disease. However, early diagnosis and detection is an essential factor in overcoming this deadly disease. Tumors formed in this disease's initial stage are divided into benign and malignant. These can be visualized using a computed tomography (CT) scan. Thanks to machine learning and deep learning, cancer stages can be detected using these images. In our study, the best and most promising results in the literature were obtained by using a hybrid learning architecture. The data mining techniques we use in obtaining these results also play a significant role. The best accuracy result we obtained belongs to the CNN+GBC hybrid algorithm, which we recommend with 99.71%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.