Both research and commercial machine translation have so far neglected the importance of properly handling the spelling, lexical and grammar divergences occurring among language varieties. Notable cases are standard national varieties such as Brazilian and European Portuguese, and Canadian and European French, which popular online machine translation services are not keeping distinct. We show that an evident side effect of modeling such varieties as unique classes is the generation of inconsistent translations. In this work, we investigate the problem of training neural machine translation from English to specific pairs of language varieties, assuming both labeled and unlabeled parallel texts, and low-resource conditions. We report experiments from English to two pairs of dialects, European-Brazilian Portuguese and European-Canadian French, and two pairs of standardized varieties, Croatian-Serbian and Indonesian-Malay. We show significant BLEU score improvements over baseline systems when translation into similar languages is learned as a multilingual task with shared representations.
We propose a method to transfer knowledge across neural machine translation (NMT) models by means of a shared dynamic vocabulary. Our approach allows to extend an initial model for a given language pair to cover new languages by adapting its vocabulary as long as new data become available (i.e., introducing new vocabulary items if they are not included in the initial model). The parameter transfer mechanism is evaluated in two scenarios: i) to adapt a trained single language NMT system to work with a new language pair and ii) to continuously add new language pairs to grow to a multilingual NMT system. In both the scenarios our goal is to improve the translation performance, while minimizing the training convergence time. Preliminary experiments spanning five languages with different training data sizes (i.e., 5k and 50k parallel sentences) show a significant performance gain ranging from +3.85 up to +13.63 BLEU in different language directions. Moreover, when compared with training an NMT model from scratch, our transfer-learning approach allows us to reach higher performance after training up to 4% of the total training steps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.