Plant disease is one of many factors that decrease the quality and quantity value of agriculture, especially rice plants. Automatic technology based on digital image processing is being developed to overcome this problem. Support Vector Machine (SVM) is one of the most used classifications and detection methods. SVM has been developed into multi SVM by combining several binary SVMs to classify more than two classes. In the proposed system, we use one of the multi SVM strategy, namely One Vs. All. The accuracy of classification reaches 86.10% using linear kernel. It has a higher value of accuracy than using polynomial and RBF kernel function. The scenario for the number of the dataset used is 70% for the training set and 30% for the testing set from a whole 240 images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.